Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rush and UCSF Found Gene Therapy Appeared To Reduce Symptoms of Parkinson’s Disease by 40 Percent

18.10.2006
Michael J. Fox Foundation Awards $1.9 Million for Phase 2 Efficacy Study
Ceregene, Inc., announced today that CERE-120, a gene therapy product in development for the treatment of Parkinson’s disease, was well tolerated and appeared to reduce symptoms by approximately 40% (p

The study was authored by: Dr. Jill Ostrem, UCSF neurologist; Dr. Philip Starr, PhD, and Dr. Paul Larson, who conducted the neurosurgery at UCSF; neurologist Dr. Leo Verhagen, with neurosurgeon Dr. Roy Bakay, at Rush University Medical Center.

The study was supported in part by a grant from The Michael J. Fox Foundation for Parkinson’s Research. Based on the initial results, the Foundation today announced plans to partially fund a Phase 2 study with a $1.9 million grant

“We were encouraged by the results of the Phase 1 trial,” said Deborah W. Brooks, president and CEO of The Michael J. Fox Foundation. “Based on these and on the intriguing efficacy observations, we’re eager to continue to support research in Phase 2 that will more definitively assess the potential of CERE-120 to treat PD.”

CERE-120 is comprised of an adeno-associated virus (AAV) vector carrying the gene for neurturin (NTN), a naturally occurring protein, whose role is to keep dopamine-secreting neurons alive and functioning normally. All 12 patients enrolled in the study underwent stereotactic neurosurgery to deposit CERE-120 into their putamen. The putamen is a region of the brain that undergoes degeneration and reduced dopamine production in Parkinson’s disease patients and this has been closely linked to the major motor deficits in these patients.

All patients entered in the trial were judged to have inadequate control of their disease with standard levadopa therapy and were otherwise potential candidates for additional treatment interventions such as deep brain stimulation (DBS) surgery.

CERE-120 was delivered at 2 different doses, with patients receiving the low dose demonstrating approximately 40% improvement in UPDRS motor “off” scores by 9 months and patients receiving the 4-fold higher dose showing a similar effect 3 months sooner. Patients also demonstrated a 50% reduction in hours of “off” time (i.e., time when normal Parkinson’s medication was ineffective and symptoms were troubling to the patient) and a doubling of good quality “on” time without dyskinesias (i.e., time when a patient is functioning well) according to self-reported diaries.

NTN (neurturin) is a member of the same protein family as glial cell-derived neurotrophic factor (GDNF) and the two molecules have similar pharmacological properties. GDNF has previously been tested in Parkinson's disease patients. Ceregene owns exclusive technology and product rights to CERE-120.

“Targeted delivery of the trophic factor neurturin is a compelling approach to treating Parkinson's disease,” said Dr. Marks. “The safety data and preliminary efficacy data that we have seen in this Phase 1 study are encouraging. Clearly, a larger-scale study is warranted.”

According to Dr. Marks, existing treatments for Parkinson’s disease treat symptoms only, and for only a limited period of time. “Patients with Parkinson’s disease urgently need therapeutic approaches that not only improve symptoms and function, but also have the ability to modify the underlying disease itself in a favorable manner,” he said.

In addition to Dr. Marks, the study was authored by: Dr. Jill Ostrem, UCSF neurologist; Dr. Philip Starr, and Dr. Paul Larson, who conducted the neurosurgery at UCSF; neurologist Dr. Leo Verhagen with neurosurgeon Dr. Roy Bakay, at Rush University Medical Center in Chicago; and Raymond T. Bartus, PhD, who led the clinical and preclinical development of CERE-120 at Ceregene.

“The planned Phase 2 trial will be a randomized controlled trial involving approximately 50 patients, and is designed to test if the efficacy we have seen in our initial Phase 1 trial will hold up in a controlled study,” stated Jeffrey M. Ostrove, PhD, president and CEO of Ceregene.

Eight medical centers will participate in the Phase 2 study: Baylor College of Medicine, Duke University, Orgeon Health Sciences University, University of Alabama at Birmingham, University of Pennsylvania and Mount Sinai College of Medicine. UCSF and Rush will also be participating.

“The Phase 1 data reported today affirms that the functioning of CERE-120 closely resembled its performance in preclinical studies both in terms of its overall safety as well as its possible efficacy,” noted Raymond T. Bartus, PhD, Ceregene’s chief operating officer. “The development of growth factors as a treatment for neurodegenerative diseases has been hampered by the difficulty of delivering them specifically to the targeted areas that need their neuroprotective properties. We believe our programs increasingly demonstrate that gene transfer may represent a safe and effective means of solving this age-old problem,” said Raymond Bartus.

www.rush.edu | EurekAlert!
Further information:
http://www.rush.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>