Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New hope for children when leukemia treatment fails

18.10.2006
St. Jude technique allows partial-match cell transplants for children with most resistant leukemia, boosting chance for cure while avoiding previous harsh forms of treatment

Clinicians at St. Jude Children's Research Hospital have successfully demonstrated an improved technique for blood stem cell transplantations in children that shows promise for those most likely to fail standard treatment for leukemia.

The St. Jude technique allows blood stem cells to come from parents or unmatched adult siblings; and it avoids the aggressive, toxic treatments that usually must accompany the transplant. This allows the majority of patients with leukemia or non-cancerous blood disorders to receive a transplant, according to Gregory Hale, M.D., St. Jude Bone Marrow Transplantation Division interim chief. A report on this work appears in the prepublication edition of the British Journal of Haematology.

A clinical trial of this technique demonstrated that it accelerated recovery of the immune system in recipients and shortened the duration of immune deficiency during the early post-transplant period, reducing the risk of infections. The immune system recovery included not only T and B lymphocytes, the major cells genetically programmed to attack specific targets, but also natural killer cells, a critical first-response army of cells that acts as a quick-strike force against a wide variety of targets.

"The overall success of this procedure suggests it holds promise for children who are likely to fail standard treatment for leukemia because they have treatment-resistant disease and no matched donor," Hale said.

The key to the St. Jude strategy--reduced intensity conditioning regimen (RICR)--is that it avoids the total-body irradiation routinely used to kill the recipient's own stem cells to make way for the transplantation. RICR also avoids the use of anti-thymocyte globulin (ATG), a drug commonly used to suppress the remaining immune system of recipients in order to reduce the chance they will reject the transplanted blood stem cells. ATG often delays rebuilding of the immune system in transplant recipients and can lead to a virus-related lymphoma. The standard treatment, called myeloablative conditioning regimen (MCR) uses total body irradiation, ATG and other drugs to eradicate the patient's own blood stem cells and suppress the remaining immune system to prevent rejection of the transplanted blood stem cells.

The underlying technique that permitted the team to eliminate total body irradiation and ATG was the use of haploidentical hematopoietic stem cell transplantation (HaploHSCT) for children, which was previously pioneered by St. Jude investigators. Before this technique, only matched transplants from a genetic twin or from a matched, unrelated donor could be used, since unmatched donations led to unacceptably high rates of severe graft-versus-host disease (GVHD).

However, the St. Jude technique treats partially matched donor blood stem cells to remove the aggressive immune system cells called T lymphocytes that normally cause GVHD. GVHD occurs when donor immune cells respond to the recipient as foreign and launch an attack on the body.

An additional advantage of this new treatment is that donor immune cells are likely to attack the leukemic cells remaining in the recipient, a reaction called a graft-versus-tumor response, according to the researchers.

During a 12-month follow-up after transplantation, the St. Jude team compared the results of its modified transplantation technique with results from a group of patients with refractory blood cancers who were treated with MCR. The investigators reported that following RICR in 22 children, 91 percent achieved full donor chimerism; that is, the recipients "adopted" the transplanted stem cells and built a blood system that was identical to that of the donor. In the MCR group that received the more aggressive therapy, 92 percent achieved full donor chimerism.

Also, although 12 patients in the RICR group and two in the MCR group experienced acute GVHD, and five in the RICR group developed chronic GVHD, none of the patients had died at the end of the first year as a result of GVHD. Acute GVHD arises within 100 days of transplant, while chronic GVHD arises after the third month.

The team also reported that these patients had a rapid recovery of immune system cells during the first four months after transplantation, compared to patients who had undergone the more toxic, standard treatment to prepare them for transplantation. This rapid recovery of the immune system reduced occurrence of viral infection, the researchers reported.

"Many viruses exist in the body in an inactive state, even after a person clears an initial infection," Hale explained. "A healthy immune system keeps those viruses in check, but after a transplant, the patient's immune system is rebuilding and not capable of mounting a strong defense. That leaves the patient vulnerable to developing hepatitis, gastroenteritis, encephalitis or other diseases that can be fatal."

Viral infections can also cause graft failure or prolong the need for transfusions to supplement red blood cells or platelets, he added. Viral infections can further weaken the immune system of transplant recipients, leaving them vulnerable to fungal infections. Moreover, the drugs used to treat those viral infections and reactivation of old infections can cause low blood counts and kidney damage.

Bonnie Kourvelas | EurekAlert!
Further information:
http://www.stjude.org

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>