Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antioxidant protects against lung damage in silicosis

17.10.2006
Levels of heme oxygenase-1 (HO-1), an antioxidant that protects against reactive oxygen species (damaging oxygen molecules that cause direct tissue injury), become elevated in the lungs of chronic silicosis patients and could represent a new treatment approach for the disease.

These results appear in the second issue for October 2006 of the American Journal of Respiratory and Critical Care Medicine, published by the American Thoracic Society.

Yoshiaki Ishigatsubo, M.D., Ph.D., of the Department of Internal Medicine and Clinical Immunology at Yokohama City University in Japan, and 11 associates studied 46 male patients with silicosis, an inflammatory disorder caused by inhaling crystalline silica for prolonged periods. The study included 27 male patients with chronic obstructive pulmonary disease and 27 healthy male volunteers as controls. The investigators also studied a mouse model of silicosis.

Silicosis results from exposure to crystalline silica in mines and foundries, at sand blasting operations and at stone, clay, and glass manufacturing plants. Crystalline silica induces the production of reactive oxygen species, which can cause scar tissue to develop in the lungs.

About 1 million workers are believed to have been exposed to silica dust in the U.S. More than 10,000 silicosis patients are currently being followed in Japan.

"Pulmonary HO-1 expression is increased in silicosis," said Dr. Ishigatsubo. "HO-1 suppresses reactive oxygen species activity, and its subsequent pathologic changes, thereby reducing disease progression."

The researchers noted that their work was the first to demonstrate that HO-1 is synthesized in the lungs of patients with silicosis, thus contributing to a significant elevation of serum HO-1 levels in these patients.

"Silica particles were consistently associated with lesions containing HO-1 expressing cells," added Dr. Ishigatsubo. "The number of HO-1-expressing cells was significantly higher in patients with silicosis than in control subjects."

The investigators said that their present results indicate that silicosis patients' serum HO-1 levels correlate significantly with their primary lung function test level and vital capacity. (Vital capacity is the maximum amount of air that can be exhaled after a maximum inhalation, showing the status of lung tissue.)

The authors believe that if serum HO-1 derives primarily from lung lesions, it could also represent a novel biomarker for evaluating the severity of silicosis.

In their mouse studies, hemin, a potent inducer of HO-1, suppressed acute inflammation after silica exposure, whereas zinc protoporphyrin, an inhibitor of HO-1, accelerated the development of silicosis lesions.

Suzy Martin | EurekAlert!
Further information:
http://www.thoracic.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>