Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Brain regions do not communicate efficiently in adults with autism

A novel look at the brains of adults with autism has provided new evidence that various brain regions of people with the developmental disorder may not communicate with each other as efficiently as they do in other people.

Researchers from the University of Washington's Autism Center will report today at the annual meeting of the Society for Neuroscience on the first study that measures neural activity by using high-resolution electroencephalography (EEG) to examine connections in the cerebral cortex, the part of the brain that deals with higher cognitive processes.

Compared to normally developing individuals, the scientists found patterns of abnormal connectivity between brain regions in people with autism. These abnormalities showed both over and under connectivity between neurons in different parts of the cortex, according to Michael Murias, a postdoctoral researcher who headed the study.

"Our findings indicate adults with autism show differences in coordinated neural activity," said Murias, "which implies poor internal communication between the parts of the brain."

The UW researchers analyzed EEGs from 36 adults, ranging in age from 19 to 38. Half the adults had autism and all had IQs of at least 80. The EEGs, which measure the activity of hundreds of millions of brain cells, were collected with an array of 124 electrodes while the people were seated and relaxed with their eyes closed for two minutes.

The researchers found patterns of higher than normal neural connectivity in the left hemisphere, particularly in the temporal lobe of the persons with autism within two different frequencies of brain waves, the delta and theta bands. This part of the brain is associated with language, which is impaired in many people with autism.

A global pattern of decreased neural connectivity between the frontal lobes and the rest of autistic brain showed up on the alpha wave band. These findings support several other studies using functional magnetic resonance imaging and positron emission tomography, both of which gauge brain activity by measuring blood flow. Post-mortem studies also suggest impairments in communication at the level of individual brain cells.

This over and under abundance of neural connections suggests inefficient and inconsistent communication inside the brains of people with autism and may explain some of the deficits shown by people who have the disorder.

The research has practical applications. Murias believes the abnormal patterns of brain activity are a potential biological marker of autism and may help to define the phenotype, or major characteristics, of autism. UW colleagues think EEG techniques can be used on young children to help in the early detection of autism, which is critical in providing interventions for the disorder. Other members of the research team are from the UW's Autism Center and include Geraldine Dawson, center director and a professor of psychology; Sara Webb, assistant professor of psychiatry and behavioral sciences; Jessica Greenson, research scientist; and Kristen Merkle, research study assistant. The National Institute of Mental Health's Studies to Advance Autism Research and Treatment and the Perry Research Fellowship Endowment funded the research.

Autism, a spectrum of developmental disorders, is the most common developmental disorder in the United States. It is estimated to affect one in every 166 children. Autism is characterized by an inability to communicate and interact with other people, and those afflicted typically have a restricted range of activities and interests.

Joel Schwarz | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>