Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain regions do not communicate efficiently in adults with autism

17.10.2006
A novel look at the brains of adults with autism has provided new evidence that various brain regions of people with the developmental disorder may not communicate with each other as efficiently as they do in other people.

Researchers from the University of Washington's Autism Center will report today at the annual meeting of the Society for Neuroscience on the first study that measures neural activity by using high-resolution electroencephalography (EEG) to examine connections in the cerebral cortex, the part of the brain that deals with higher cognitive processes.

Compared to normally developing individuals, the scientists found patterns of abnormal connectivity between brain regions in people with autism. These abnormalities showed both over and under connectivity between neurons in different parts of the cortex, according to Michael Murias, a postdoctoral researcher who headed the study.

"Our findings indicate adults with autism show differences in coordinated neural activity," said Murias, "which implies poor internal communication between the parts of the brain."

The UW researchers analyzed EEGs from 36 adults, ranging in age from 19 to 38. Half the adults had autism and all had IQs of at least 80. The EEGs, which measure the activity of hundreds of millions of brain cells, were collected with an array of 124 electrodes while the people were seated and relaxed with their eyes closed for two minutes.

The researchers found patterns of higher than normal neural connectivity in the left hemisphere, particularly in the temporal lobe of the persons with autism within two different frequencies of brain waves, the delta and theta bands. This part of the brain is associated with language, which is impaired in many people with autism.

A global pattern of decreased neural connectivity between the frontal lobes and the rest of autistic brain showed up on the alpha wave band. These findings support several other studies using functional magnetic resonance imaging and positron emission tomography, both of which gauge brain activity by measuring blood flow. Post-mortem studies also suggest impairments in communication at the level of individual brain cells.

This over and under abundance of neural connections suggests inefficient and inconsistent communication inside the brains of people with autism and may explain some of the deficits shown by people who have the disorder.

The research has practical applications. Murias believes the abnormal patterns of brain activity are a potential biological marker of autism and may help to define the phenotype, or major characteristics, of autism. UW colleagues think EEG techniques can be used on young children to help in the early detection of autism, which is critical in providing interventions for the disorder. Other members of the research team are from the UW's Autism Center and include Geraldine Dawson, center director and a professor of psychology; Sara Webb, assistant professor of psychiatry and behavioral sciences; Jessica Greenson, research scientist; and Kristen Merkle, research study assistant. The National Institute of Mental Health's Studies to Advance Autism Research and Treatment and the Perry Research Fellowship Endowment funded the research.

Autism, a spectrum of developmental disorders, is the most common developmental disorder in the United States. It is estimated to affect one in every 166 children. Autism is characterized by an inability to communicate and interact with other people, and those afflicted typically have a restricted range of activities and interests.

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>