Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain regions do not communicate efficiently in adults with autism

17.10.2006
A novel look at the brains of adults with autism has provided new evidence that various brain regions of people with the developmental disorder may not communicate with each other as efficiently as they do in other people.

Researchers from the University of Washington's Autism Center will report today at the annual meeting of the Society for Neuroscience on the first study that measures neural activity by using high-resolution electroencephalography (EEG) to examine connections in the cerebral cortex, the part of the brain that deals with higher cognitive processes.

Compared to normally developing individuals, the scientists found patterns of abnormal connectivity between brain regions in people with autism. These abnormalities showed both over and under connectivity between neurons in different parts of the cortex, according to Michael Murias, a postdoctoral researcher who headed the study.

"Our findings indicate adults with autism show differences in coordinated neural activity," said Murias, "which implies poor internal communication between the parts of the brain."

The UW researchers analyzed EEGs from 36 adults, ranging in age from 19 to 38. Half the adults had autism and all had IQs of at least 80. The EEGs, which measure the activity of hundreds of millions of brain cells, were collected with an array of 124 electrodes while the people were seated and relaxed with their eyes closed for two minutes.

The researchers found patterns of higher than normal neural connectivity in the left hemisphere, particularly in the temporal lobe of the persons with autism within two different frequencies of brain waves, the delta and theta bands. This part of the brain is associated with language, which is impaired in many people with autism.

A global pattern of decreased neural connectivity between the frontal lobes and the rest of autistic brain showed up on the alpha wave band. These findings support several other studies using functional magnetic resonance imaging and positron emission tomography, both of which gauge brain activity by measuring blood flow. Post-mortem studies also suggest impairments in communication at the level of individual brain cells.

This over and under abundance of neural connections suggests inefficient and inconsistent communication inside the brains of people with autism and may explain some of the deficits shown by people who have the disorder.

The research has practical applications. Murias believes the abnormal patterns of brain activity are a potential biological marker of autism and may help to define the phenotype, or major characteristics, of autism. UW colleagues think EEG techniques can be used on young children to help in the early detection of autism, which is critical in providing interventions for the disorder. Other members of the research team are from the UW's Autism Center and include Geraldine Dawson, center director and a professor of psychology; Sara Webb, assistant professor of psychiatry and behavioral sciences; Jessica Greenson, research scientist; and Kristen Merkle, research study assistant. The National Institute of Mental Health's Studies to Advance Autism Research and Treatment and the Perry Research Fellowship Endowment funded the research.

Autism, a spectrum of developmental disorders, is the most common developmental disorder in the United States. It is estimated to affect one in every 166 children. Autism is characterized by an inability to communicate and interact with other people, and those afflicted typically have a restricted range of activities and interests.

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>