Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Histamine tied to changes in blood pressure during exercise-recovery period

12.10.2006
Finding may explain biggest cause of post-exercise fainting

Overactivation of two receptors for histamine, normally associated with common allergies and acid reflux, may explain why some people, including highly trained athletes, pass out soon after heightened physical activities, according to researchers at the University of Oregon.

A series of studies led researchers in incremental steps to the discovery that the use of two commonly used antihistamines (fexofenadine and ranitidine) prior to exercise dramatically lower or completely eliminate low blood pressure following exertion. The drugs worked by preventing post-exercise hyperemia, an increased flow of blood, in the skeletal muscle during the critical 90-minute recovery period after exercise. In all, the pre-exercise consumption of the two antihistamines reduced the blood flow that occurs during recovery by 80 percent.

The study, funded by the American Heart Association, was posted online ahead of regular publication in the Journal of Applied Physiology. While fainting after exercise, a condition called syncope, can indicate a serious heart disorder, most cases are linked to low blood pressure and low blood flow to the brain.

"There is reason to believe that histamine is the primary vasodilator contributing to post-exercise hypotension, but we cannot say for certain," cautioned principal investigator John R. Halliwill, a professor of human physiology. "Some people have problems regulating blood pressure during and after exercise. Trained athletes have had fainting bouts at the end of exercise. It may be that these result from a natural overactivation of these two receptors for histamine."

The histamine receptors involved are known as H1 and H2. Fexofenadine, which is the generic name for Allegra, works against H1, reducing the occurrence of such allergy symptoms as sneezing and runny nose. Ranitidine, or Zantac, acts against H2 in the treatment of acid reflux.

For the study, 28 sedentary and endurance-trained men and women were monitored closely throughout a session that covered a pre-exercise period, a 60-minute ride on a cycling machine and a 90-minute recovery period. The participants were all non-smokers without blood pressure problems and between the ages of 19 and 34. The group given the histamine blockers consumed them with water 60 minutes before beginning the exercise regimen.

The studies in Halliwill's Exercise and Environmental Physiology Laboratories were designed to pursue the mechanisms involved in the exercise recovery period. The findings that the two antihistamine products worked as they did do not mean that athletes or sedentary-turned-active people should head to their medicine cabinets before exercising.

The amount of fexofenadine used in the study was almost three times the strongest dose used for respiratory allergies, while the dosage for ranitidine matched the common starting dose for battling heartburn. Also, there may be a benefit to the normal activation of these receptors during physical activity, because routine exercise helps to reduce or prevent the development of hypertension, or high blood pressure. "Activating these receptors might be an important part of the health benefits of daily exercise," Halliwill said.

The two drugs, however, did not appear to affect the central nervous system or cause sedation during the exercise experiments, Halliwill and co-author Jennifer L. McCord, a doctoral student, noted in the study.

The big question now, Halliwill said, is what triggers the histamine responses during exercise.

"The body tends to be very good at recycling mechanisms," he said. "The body may be using these same receptors for other things. A bout of exercise appears to turn on a program for remodeling blood vessels in the body, and these receptors may be an important part of that program."

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Tiny microenvironments in the ocean hold clues to global nitrogen cycle

23.04.2018 | Earth Sciences

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>