Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover toxin that causes gastro disease

11.10.2006
Australian scientists have identified a highly potent toxin that causes severe gastrointestinal illnesses, including food poisoning.

The toxin, produced by certain strains of E. coli bacteria, has been found to be responsible for an outbreak of haemolytic uraemic syndrome, a dangerous disease that causes acute kidney failure, in South Australia in 1998.

The research team was led by Dr Adrienne Paton from the University of Adelaide, and included scientists from Monash University's ARC Centre of Excellence in Structural and Functional Microbial Genomics, and the United States.

Dr Travis Beddoe from Monash University's Department of Biochemistry and Molecular Biology, is one of the investigators who discovered that the bacterial toxin, subtilase cytotoxin, deactivates an essential component of cells in the gastrointestinal tract.

"It is unique because it cuts an essential component of the cell machinery in half, therefore disabling it," he said.

As well as learning how the toxin works, the scientists have also determined its three-dimensional structure, which will aid in the development of treatments for toxin-related diseases.

"This toxin belongs to the family of toxins that cause whooping cough, a very serious bacterial infection that affects children," Dr Beddoe said.

He said the research breakthrough may also provide insights into the development of age-related and degenerative diseases such as Parkinson's disease and Alzheimer's disease, and may be used in the treatment of some cancers.

The collaborative research was supported by the National Health and Medical Research Council and the Australian Research Council. The research findings are published in the latest issue of the journal Nature.

For more information contact Ms Robyn Anns, Media Communications on +61 3 9905 9317 or 0417 568 781.

Penny Fannin | EurekAlert!
Further information:
http://www.monash.edu.au

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>