Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lung cancer: New techniques improve radiation therapy

11.10.2006
Lung cancer is the second most common malignant tumor in men after prostate carcinoma; in Germany alone, about 27,000 men develop the disease every year. But the incidence of lung tumors is increasing in women, too.

However, so far only 10 to 15 percent of lung cancer patients can be cured permanently. More than half of the patients with a small-cell lung carcinoma and about 65 percent of the patients with a non-small-cell lung carcinoma receive radiation treatment in the course of their illness.

The precision of a three-dimensional radiation planning is, however, limited by nature in the case of lung cancer: During breathing, the tumors shift by a few centimeters. As a consequence, the target area "moves" and can be missed if the radiation limits have been chosen too narrowly. Then the tumor cells will keep growing. But if the radiotherapist chooses the limits of the radiation field too generously, more side effects in the healthy lung are to be expected.

Image guided radiotherapy.

The image guided radiotherapy (IGRT) offers a solution to this dilemma, as experts report at the ESTRO congress in Leipzig. Novel linear accelerators that are equipped with a special x-ray device depict the tumor immediately before the radiation treatment. This allows capturing "moving" target areas. The device registers whether the planned situation matches the real situation. If this is not the case, the computer calculates the deviation, and the radiation table is shifted accordingly.

Respiration-Adapted Radiotherapy.

The respiration-adapted radiotherapy is also promising. With this method, the radiation is activated and deactivated with the breathing. In this way, the rays always hit the tumor at the same position. In some cases, the patients are also asked to hold their breath or to breathe in a certain rhythm, which requires training the patients accordingly at the beginning of the treatment. If the anatomical shifts can be purposefully controlled, they can also be purposefully compensated for. This method is also systematically studied at the moment. Here, physicians and physicists mainly calculate how the radiation volume can be decreased by this technique.

Stereotactic radiotherapy takes the place of the scalpel.

Stereotactic radiation, which requires a lot of effort and is so far mostly used for brain tumors, is now also tested by radiotherapists on small tumors of the body stem in especially radiosensitive environments. The exact three-dimensional coordinates of the target area are determined with computer tomograms and a special planning system. To enable a precise transmission of the planned radiation data, the body of the patient is fixated with a frame during the treatment. Under computer-tomographic guidance, markings in this frame are used to direct the radiation precisely at the tumor. In most cases, this is achieved by having the radiation hit the target location from many different directions and at precisely calculated angles.

A team led by Frank Zimmermann from the Klinikum rechts der Isar in Munich presents a study with 68 patients in Leipzig, whose small lung tumors could not be operated on for general health reasons. In 3 to 5 sessions, a high radiation dose was in each case delivered by stereotactic methods. In the so far three-year follow-up period, the tumor resumed its growth in only four patients (6 percent). No serious adverse effects were observed.

Barbara Ritzert | alfa
Further information:
http://www.estro.be

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>