Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lung cancer: New techniques improve radiation therapy

11.10.2006
Lung cancer is the second most common malignant tumor in men after prostate carcinoma; in Germany alone, about 27,000 men develop the disease every year. But the incidence of lung tumors is increasing in women, too.

However, so far only 10 to 15 percent of lung cancer patients can be cured permanently. More than half of the patients with a small-cell lung carcinoma and about 65 percent of the patients with a non-small-cell lung carcinoma receive radiation treatment in the course of their illness.

The precision of a three-dimensional radiation planning is, however, limited by nature in the case of lung cancer: During breathing, the tumors shift by a few centimeters. As a consequence, the target area "moves" and can be missed if the radiation limits have been chosen too narrowly. Then the tumor cells will keep growing. But if the radiotherapist chooses the limits of the radiation field too generously, more side effects in the healthy lung are to be expected.

Image guided radiotherapy.

The image guided radiotherapy (IGRT) offers a solution to this dilemma, as experts report at the ESTRO congress in Leipzig. Novel linear accelerators that are equipped with a special x-ray device depict the tumor immediately before the radiation treatment. This allows capturing "moving" target areas. The device registers whether the planned situation matches the real situation. If this is not the case, the computer calculates the deviation, and the radiation table is shifted accordingly.

Respiration-Adapted Radiotherapy.

The respiration-adapted radiotherapy is also promising. With this method, the radiation is activated and deactivated with the breathing. In this way, the rays always hit the tumor at the same position. In some cases, the patients are also asked to hold their breath or to breathe in a certain rhythm, which requires training the patients accordingly at the beginning of the treatment. If the anatomical shifts can be purposefully controlled, they can also be purposefully compensated for. This method is also systematically studied at the moment. Here, physicians and physicists mainly calculate how the radiation volume can be decreased by this technique.

Stereotactic radiotherapy takes the place of the scalpel.

Stereotactic radiation, which requires a lot of effort and is so far mostly used for brain tumors, is now also tested by radiotherapists on small tumors of the body stem in especially radiosensitive environments. The exact three-dimensional coordinates of the target area are determined with computer tomograms and a special planning system. To enable a precise transmission of the planned radiation data, the body of the patient is fixated with a frame during the treatment. Under computer-tomographic guidance, markings in this frame are used to direct the radiation precisely at the tumor. In most cases, this is achieved by having the radiation hit the target location from many different directions and at precisely calculated angles.

A team led by Frank Zimmermann from the Klinikum rechts der Isar in Munich presents a study with 68 patients in Leipzig, whose small lung tumors could not be operated on for general health reasons. In 3 to 5 sessions, a high radiation dose was in each case delivered by stereotactic methods. In the so far three-year follow-up period, the tumor resumed its growth in only four patients (6 percent). No serious adverse effects were observed.

Barbara Ritzert | alfa
Further information:
http://www.estro.be

More articles from Health and Medicine:

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht FAU researchers demonstrate that an oxygen sensor in the body reduces inflammation
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

Stagnation in the South Pacific Explains Natural CO2 Fluctuations

23.02.2018 | Earth Sciences

Mat4Rail: EU Research Project on the Railway of the Future

23.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>