Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human brain region functions like digital computer

09.10.2006
A region of the human brain that scientists believe is critical to human intellectual abilities surprisingly functions much like a digital computer, according to psychology Professor Randall O'Reilly of the University of Colorado at Boulder.

The finding could help researchers better understand the functioning of human intelligence.

In a review of biological computer models of the brain appearing in the Oct. 6 edition of the journal Science, O'Reilly contends that the prefrontal cortex and basal ganglia operate much like a digital computer system.

"Many researchers who create these models shun the computer metaphor," O'Reilly said. "My work comes out of a tradition that says people's brains are nothing like computers, and now all of a sudden as we look at them, in fact, in a certain respect they are like computers."

Digital computers operate by turning electrical signals into binary "on and off states" and flexibly manipulating these states by using switches. O'Reilly found the same operating principles in the brain.

"The neurons in the prefrontal cortex are binary -- they have two states, either active or inactive -- and the basal ganglia is essentially a big switch that allows you to dynamically turn on and off different parts of the prefrontal cortex," O'Reilly said.

The brain as a whole operates more like a social network than a digital computer, with neurons communicating to allow learning and the creation of memory, according to O'Reilly.

However, the computer-like features of the prefrontal cortex broaden the social networks, helping the brain become more flexible in processing novel and symbolic information, O'Reilly said.

The prefrontal cortex is the executive center of the brain and supports "higher level" cognition, including decision making and problem solving. Researchers believe that the prefrontal cortex is critical to human intellectual ability, and better understanding it is crucial to understanding more about human intelligence, according to O'Reilly.

If researchers can gain a better understanding of this synthesis of the prefrontal cortex and the brain as a whole, they could be on the way to a better understanding of human intelligence.

The best way to do this, O'Reilly says, is by developing more biologically based computer models of the brain to help researchers understand how the biology of the brain works, and eventually provide insights into what makes us so smart.

"Modeling the brain is not like a lot of science where you can go from one step to the next in a chain of reasoning, because you need to take into account so many levels of analysis," O'Reilly said.

O'Reilly likens the process to weather modeling.

"Most weather models don't exactly represent what happens in a low-pressure system, but they do capture some global features," he said. "If you capture the essence of it, it tells you a lot about how the system works. It's the same premise when it comes to modeling of the brain."

Randall O'Reilly | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>