Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human brain region functions like digital computer

09.10.2006
A region of the human brain that scientists believe is critical to human intellectual abilities surprisingly functions much like a digital computer, according to psychology Professor Randall O'Reilly of the University of Colorado at Boulder.

The finding could help researchers better understand the functioning of human intelligence.

In a review of biological computer models of the brain appearing in the Oct. 6 edition of the journal Science, O'Reilly contends that the prefrontal cortex and basal ganglia operate much like a digital computer system.

"Many researchers who create these models shun the computer metaphor," O'Reilly said. "My work comes out of a tradition that says people's brains are nothing like computers, and now all of a sudden as we look at them, in fact, in a certain respect they are like computers."

Digital computers operate by turning electrical signals into binary "on and off states" and flexibly manipulating these states by using switches. O'Reilly found the same operating principles in the brain.

"The neurons in the prefrontal cortex are binary -- they have two states, either active or inactive -- and the basal ganglia is essentially a big switch that allows you to dynamically turn on and off different parts of the prefrontal cortex," O'Reilly said.

The brain as a whole operates more like a social network than a digital computer, with neurons communicating to allow learning and the creation of memory, according to O'Reilly.

However, the computer-like features of the prefrontal cortex broaden the social networks, helping the brain become more flexible in processing novel and symbolic information, O'Reilly said.

The prefrontal cortex is the executive center of the brain and supports "higher level" cognition, including decision making and problem solving. Researchers believe that the prefrontal cortex is critical to human intellectual ability, and better understanding it is crucial to understanding more about human intelligence, according to O'Reilly.

If researchers can gain a better understanding of this synthesis of the prefrontal cortex and the brain as a whole, they could be on the way to a better understanding of human intelligence.

The best way to do this, O'Reilly says, is by developing more biologically based computer models of the brain to help researchers understand how the biology of the brain works, and eventually provide insights into what makes us so smart.

"Modeling the brain is not like a lot of science where you can go from one step to the next in a chain of reasoning, because you need to take into account so many levels of analysis," O'Reilly said.

O'Reilly likens the process to weather modeling.

"Most weather models don't exactly represent what happens in a low-pressure system, but they do capture some global features," he said. "If you capture the essence of it, it tells you a lot about how the system works. It's the same premise when it comes to modeling of the brain."

Randall O'Reilly | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Health and Medicine:

nachricht TSRI researchers develop new method to 'fingerprint' HIV
29.03.2017 | Scripps Research Institute

nachricht Periodic ventilation keeps more pollen out than tilted-open windows
29.03.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>