Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough by MUHC researcher has major implications for diagnosis, treatment of childhood blindness

04.10.2006
Eye Health Month is off to an exciting start, with the recent announcement by MUHC researcher Dr. Robert Koenekoop and his colleagues of a breakthrough discovery in the genetics of childhood blindness. The new study identified the gene most often responsible for LCA (Leber Congenital Amaurosis), the commonest form of congenital blindness.

"This discovery represents a significant advance in the fight against this debilitating condition." says Dr. Koenekoop, Director of the McGill Ocular Genetics Centre at the MUHC and Associate Professor in Ophthalmology, Human Genetics at McGill University. He is also principal co-investigator of this study with Dr. Anneke den Hollander, and Dr. Frans Cremers from The University of Nijmegen in the Netherlands.

LCA causes blindness from birth or during the first few months of life. About 600 patients with LCA are currently being diagnosed and managed at the McGill Ocular Genetics Center of the MUHC, directed by Dr. Koenekoop. The disorder affects 1 in 30,000 newborns, and is currently incurable. "This is about to change, however," says Dr. Koenekoop. "Our discovery has major implications for improved screening. It also opens avenues for treatment of LCA."

Discovery of the CEP290 gene and a single mutation found in 20 percent of LCA patients will significantly speed up the genetic testing process for blind children. From a therapeutic viewpoint, this discovery adds another pathway for possible therapeutic manipulation and paves the way for a human gene replacement trial of a related LCA gene (RPE65) in early 2007. If this trial is successful, gene replacement therapy may not be far off.

Prior to Dr. Koenekoop's discovery, LCA had been linked to mutations in eight genes. Together, these mutations account for about 45 percent of cases. By studying members of a Quebec family affected by LCA, Dr. Koenekoop's team, which includes research associate and molecular biologist Dr. Irma Lopez, was able to identify a mutation in a gene known as CEP290. This mutation was detected in 21 percent of unrelated cases - making it one of the most common causes of LCA yet identified. The team's research, which was funded by the Foundation Fighting Blindness Canada, was published in the September 2006 issue of The American Journal of Human Genetics.

"The Foundation Fighting Blindness is dedicated to funding the best research in Canada and Dr. Koenekoop's new gene discovery proves that," says Sharon Colle, National Executive Director. "We believe that childhood blindness is intolerable and that cures really are in sight." The MUHC, in collaboration with Dr. Anneke den Hollander and Dr. Frans Cremers from the University of Nijmegen, will continue research into LCA, conducting functional studies of the CEP290 gene and screening more patients for CEP290 mutations.

Quebec is the perfect place to study genetic diseases like LCA. Quebec's population of approximately 6 million is known as a "founder population" because it can be traced back to a small number (approximately 250) of forefathers. This small gene pool provides the ideal population for the study of genetic disease. "Genetic diseases like LCA are more common in founder populations," says Dr. Koenekoop. "Our patients are enthusiastic about participating in these studies. They realize this research may ultimately lead to improved diagnosis, treatments and cures."

The Montreal Children's Hospital is the pediatric teaching hospital of the McGill University Health Centre (MUHC). The institution is a leader in the care and treatment of sick infants, children, and adolescents from across Quebec. The Montreal Children's Hospital provides a high level and broad scope of health care services, and provides ultra specialized care in many fields including: cardiology and cardiac surgery; neurology and neurosurgery, traumatology; genetic research; psychiatry and child development and musculoskeletal conditions, including orthopedics and rheumatology. Fully bilingual and multicultural, the institution respectfully serves an increasingly diverse community in more than 50 languages.

The McGill University Health Centre is a comprehensive academic health institution with an international reputation for excellence in clinical programs, research and teaching. The MUHC is a merger of five teaching hospitals affiliated with the Faculty of Medicine at McGill University--the Montreal Children's, Montreal General, Royal Victoria, and Montreal Neurological Hospitals, as well as the Montreal Chest Institute. Building on the tradition of medical leadership of the founding hospitals, the goal of the MUHC is to provide patient care based on the most advanced knowledge in the health care field, and to contribute to the development of new knowledge.

Ian Popple | MUHC
Further information:
http://www.muhc.mcgill.ca
http://www.thechildren.com

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>