Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virulence of TB strain in Leicester outbreak caused by ‘unusual’ mechanism

04.10.2006
Scientists have identified a mechanism that contributes to the virulence of a particular strain of tuberculosis, making it appear more likely to lead to disease than other strains. In 2001, this strain, known as CH, was responsible for a major school outbreak of TB in Leicester thought to have infected at least 254 pupils.

In general, most people infected with Mycobacterium tuberculosis, the bacterium that causes TB, will not show any symptoms. It is thought that one third of all people carry the bacteria, yet less than one in ten will develop TB. However, almost a quarter of the people infected with the CH strain required treatment for the disease. Left untreated, TB can prove fatal.

Now, a team jointly led by Dr Robert Wilkinson at the Wellcome Trust Centre for Clinical Tropical Medicine, Imperial College London, and Professor Mike Barer at the University of Leicester, has identified a segment of the CH genome which, when absent, modifies the immune system’s response to the strain and make it more likely to lead to disease. The findings of their research are published today in Proceedings of the National Academy Sciences of the USA. The research was funded by the Wellcome Trust and the Medical Research Council.

“Whilst this particular strain of TB does not appear more infectious than others, it appeared more likely to cause primary disease and endanger the health of an infected person,” says Dr Wilkinson. “The CH strain has evolved a mechanism to avoid the early immune response and thus give it an advantage in the early struggle against the immune system. Interestingly the genetic basis for this appears to be the loss, rather than gain, of a gene, which is unusual.”

The missing segment is thought to be have been deleted during a rare rearrangement within the CH genome.

“TB and other mycobacteria appear to be remarkably careless about preserving their genomes and appear to have evolved by a succession of ‘accidents’ in which several genes have been lost at a time,” explains Professor Barer. “We don't really understand how the losses occur, but it is likely that, for one reason or another, loops form in the DNA and the genes in the loops are lost.

“Unlike many other bacteria, the TB group cannot pick up DNA from its relatives so it cannot get lost genes back again. The ultimate example of this is the leprosy bacillus. This has lost so many genes that it can now only grow in the tissues of humans, nine-banded armadillos and immunocompromised mice.”

Despite the increased likelihood that the CH strain of tuberculosis will develop to the disease stage, Dr Wilkinson is keen to stress that it is still possible to treat the strain.

“Although this strain appears more likely to lead to disease than others, it is responsive to the antibiotics prescribed for TB infection,” says Dr Wilkinson.

Professor Barer comments: “Our studies on the TB outbreak strain seem to have uncovered a deeper truth about how the bacterium may evolve and adapt to persist in different human populations.”

According to the Health Protection Agency, the incidence of TB in the UK is increasing, but it still remains quite rare, with less than 7000 new cases a year. Cases in the UK are predominantly confined to the major cities and about 40% of all cases are in London. However, globally TB is a major problem: an estimated one third of the world's population – nearly two billion people – are infected. Ten million people a year develop the active disease worldwide, which kills three million each year.

Alex Jelley | alfa
Further information:
http://www.imperial.ac.uk

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>