Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technique to arrest urinary incontinence

29.09.2006
The University Hospital of Navarra is to carry out clinical trials for urinary incontinence using the intraurethral injection of myoblasts (adult stem cells obtained by means of a biopsy of the patient). The trials will be undertaken with 15 women with urinary incontinence.

The project is to recruit the sufferers over a six-month period and to carry out the project jointly between the Cellular Therapy Area and the Department of Urology at the University Hospital of Navarra.

Amongst adult women, incontinence is largely due to the loss of muscular mass of the sphincter, recoverable by injecting this sphincter zone with the patient’s own muscle cells (myoblasts) with the objective of regenerating this muscle, enhancing its contractility and reducing incontinence.

The knowledge of this technique worldwide is confined to less than 200 patients: half a dozen in Canada and about 180 in Austria. The initial idea is the same, although there are differences in how the cells are obtained and in their processing.

Biological scaffolding

The treatment of cystoceles (prolapses of the bladder) is currently undertaken using meshes that act to reinforce the original tissues. These are usually synthetic or of natural (biological) origin, but other, hybrid materials, are being worked with.

Thus, with this collaboration between the Department of Urology and the Cellular Therapy Area in adult stem cell therapy for the treatment of urinary incontinence and prolapses of the pelvic organs, there is another line of research: the use of biological meshes as a support or as “scaffolding” onto which cells are infiltrated so that the myofibroblasts might grow. It is intuitive to believe that the mesh becomes covered with the fibromuscular cells themselves, and that they penetrate the mesh. It is this that is really the reinforcement; the mesh is but a supportive scaffolding rather than an end in itself.

Cooperating in carrying out this project is the BARD company, which manufactures and markets biological meshes. A number of in vitro studies and experiments with animals will be undertaken in order to favour cell growth on the biological meshes and the effect of these with a number of agents. Then they will be implanted in model experimental animals to examine their capacity to integrate into the tissue and carry out the function of support.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=1042

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>