Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Magic formula' accurately predicts fracture risk in osteoporotic women

27.09.2006
Researchers have developed a mathematic formula to predict a woman's risk of osteoporotic fracture. The equation has proved 75 percent accurate and will allow physicians to tailor their treatment strategies to help women prevent fractures of fragile bones. The study appears in the October issue of Radiology.

"Approximately 45 percent of women have different levels of bone mineral density between their hip and their spine, leading to uncertainty as to how physicians should assess their future fracture risk," said the study's lead author, Margaret Joy Henry, B.Sc(Hons)., Ph.D., statistician in the Department of Clinical and Biomedical Sciences at The University of Melbourne, Australia. "We have derived an equation that successfully predicted 75 percent of fractures in women, two years after their initial measurements were taken."

Women with osteoporosis have brittle bones that are more likely to break as a result of a minor bump or fall. Bones affected by osteoporosis are less dense than normal bones, due to larger pores in the bone, reduced calcium levels and fewer blood vessels.

The equation developed by Dr. Henry and colleagues takes into account a variety of risk factors, not just bone mineral density. A patient's likelihood of falling, low bone mass, excess or low body weight and additional factors are combined into a single formula that can indicate to a physician how serious a woman's fracture risk may be. Treatment strategies may then be targeted on the basis of a woman's predicted outcome.

A total of 231 elderly women who had sustained a low-trauma fracture of the hip, spine, humerus or forearm during a two-year period were recruited, as well as 448 elderly women who were selected randomly and had not sustained a fracture during the same two-year period.

The equation was developed based on measurements obtained in this study population. It was then tested in a third group of women from the community, who were randomly selected to be followed for a six-year period to determine the success of the formula for predicting fractures.

By using the formula, 75 percent of fractures were successfully predicted two years after the baseline measurements were obtained. The authors also discovered that heavier body weight seemed to increase the force applied to the skeleton during a fall. Findings of most previous studies indicated that lighter body weight led to increased risk of fracture, due to lower bone mass.

Development of this formula to predict future fracture risk is important because it will allow physicians to better adapt treatment strategies for women with osteoporosis, especially by taking into consideration different bone density measurements throughout the body. A variety of treatment regimens can be used, including hormone replacement therapy, non-hormonal medicines, vitamin D and calcium supplements, and additional therapies such as calcitriol--an active form of vitamin D that improves the absorption of calcium from the digestive process.

"As the average age of the population increases, the number of fractures attributable to osteoporosis is set to increase dramatically," said Dr. Henry. "The ability to predict fracture risk, based on simple clinical measurements, will assist in targeting treatment for people at highest risk, thus helping reduce the burden of this disease."

Dr. Henry and colleagues are currently assessing risk factors in a large cohort of men to develop a similar formula for use in the male population.

Heather Babiar | EurekAlert!
Further information:
http://www.rsna.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>