Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough offers new tool for studying degenerative disease

27.09.2006
Scientists in the Linus Pauling Institute at Oregon State University have discovered a new technique to let them watch, visualize and precisely measure a key oxidant in animal cells, an important breakthrough that could dramatically speed research on everything from Lou Gehrig's Disease to heart disease, hypertension, diabetes and aging.

The findings are being published online this week in Proceedings of the National Academy of Sciences, a professional journal. They could open the door to major advances on some of the world's most significant degenerative diseases, researchers say.

The OSU scientists, in collaboration with Molecular Probes-Invitrogen of Eugene, Ore., found a chemical process to directly see and visualize "superoxide" in actual cells. This oxidant, which was first discovered 80 years ago, plays a key role in both normal biological processes and – when it accumulates to excess – the destruction or death of cells and various disease processes.

"In the past, our techniques for measuring or understanding superoxide were like blindly hitting a box with a hammer and waiting for a reaction," said Joseph Beckman, a professor of biochemistry and director of the OSU Environmental Health Sciences Center. "Now we can really see and measure, in real time, what's going on in a cell as we perform various experiments."

In research on amyotrophic lateral sclerosis, or Lou Gehrig's Disease, which is one of his lab's areas of emphasis, Beckman said they have used the new technique to learn as much in the past three months about the basic cell processes as they did in the previous 15 years. Hundreds of experiments can now rapidly be done that previously would have taken much longer or been impossible.

"This will enable labs all over the world to significantly speed up their work on the basic causes and processes of many diseases, including ALS, arthritis, diabetes, Parkinson's disease, Alzheimer's disease, heart disease and others," Beckman said. "And it should be especially useful in studying aging, particularly the theory that one cause of aging is mitochondrial decay."

The process of oxidation in the body, researchers say, is one that's fundamental to life but also prone to problems. Oxygen in the cells can be reduced to a molecule called superoxide, which is part of normal immune system processes and may also have other functions – it was first named by OSU alumnus Linus Pauling in 1934.

"Oxygen is actually one of the more toxic molecules in the environment," Beckman said. "Breathing 100 percent pure oxygen will destroy your lungs in about three days because it increases the formation of superoxide."

Superoxide is efficiently removed by an enzyme, superoxide dismutase. Antioxidants in food, such as vitamin C and E, are also part of this process. And in healthy animals, including humans, this delicate balancing act can work well and cause few problems. But sometimes the process breaks down and excess levels of superoxide begin to accumulate and lead to a wide variety of degenerative diseases.

Prior to this, there was no direct and accurate way to measure superoxide or its origin from the two places that produce it, the cell's cytosol or mitochondria. Now there is.

With the new system developed at OSU, researchers can use a fluorescent microscope, a fairly standard laboratory tool, to actually see levels of superoxide and observe changes as experiments are performed with living cells.

"If we poison the mitochondria, using something like the pesticides that have been implicated in Parkinson's disease, we can actually see superoxide levels begin to rapidly rise," Beckman said. "You get a similar reaction if a growth factor is added that's implicated in the development of Lou Gehrig's Disease."

The data available from this new technology, Beckman said, are so profound that for some time many in the science community didn't believe it was possible.

"This will become a critical tool in learning how superoxide works in a cell," he said. "I've been studying this for more than 10 years and never thought we would have such a clear and accurate picture of what's going on inside a living cell."

In their research on ALS, for instance, OSU scientists have used the new system to actually see cells eating themselves alive and dying from excess superoxide production. A new compound is in phase one clinical trials that appears to inhibit this process and may ultimately provide a therapy for the disease.

Oxidative stress resulting from mitochondrial dysfunction has already been implicated in neurodegeneration, aging, diabetes and cancer, the researchers said in their report. The new findings could rapidly speed research in all of those fields, they said.

Joseph Beckman | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>