Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows leptin could combat type 2 diabetes

25.09.2006
Gene therapy technique reverses type 2 diabetes in mice

University of Florida researchers have discovered the appetite-controlling hormone leptin could also combat type 2 diabetes, a disease that has become a growing problem in the United States as more Americans pack on extra pounds.

Using a novel gene therapy technique, UF researchers were able to reverse type 2 diabetes in mice. The researchers found that in diabetic mice, leptin acts in the hypothalamus to keep the body from producing too much insulin even after constant exposure to a high-fat diet, which over time can lead to or worsen type 2 diabetes, according to findings published this month in the online edition of the journal Peptides.

Although more tests are needed, scientists are hopeful these findings will lead to better treatments for patients with type 2 diabetes, said Satya Kalra, Ph.D., a UF professor of neuroscience and the senior author of the article.

"We found that we were successful in keeping the blood levels of insulin low at the same time keeping blood glucose levels at a normal range," Kalra said. "In other words, we were able to correct diabetes in these animals under various challenges."

The researchers injected a gene embedded in a harmless virus into the brains of the mice to increase leptin production in the hypothalamus, which regulates the hormone. While past studies have shown leptin acts in the brain to regulate weight and appetite, this is the first time researchers have shown that leptin can independently affect insulin secretion as well, Kalra said.

Typically, eating rich and fatty foods causes blood sugar levels to rise, which in turn causes the body to produce more insulin, a protein that helps the body use carbohydrates. Patients with type 2 diabetes often become resistant to the insulin they do make, causing too much of it to build up in the body. After gene therapy, tests showed that the blood sugar and insulin levels in the mice that received it had returned to normal, even when they were fed a high-fat diet. Mice that ate a high-fat diet but that did not receive gene therapy, however, continued to overproduce insulin and have high blood sugar levels, which Kalra said are markers for type 2 diabetes. In another arm of the study, researchers also discovered that normal, nondiabetic rats that received leptin gene therapy produced lower levels of insulin as well.

"This was totally unexpected," Kalra said. "Until now there was no evidence that leptin action in the hypothalamus had control on insulin secretion. (With leptin gene therapy) we can reimpose that control."

More than 18 million people in the United States have diabetes and about 90 percent of them have type 2 diabetes, also called adult-onset diabetes, according to the Centers for Disease Control and Prevention. Most cases of type 2 diabetes result from leading a sedentary lifestyle, being overweight and overeating.

If left untreated, type 2 diabetes can also cause cardiovascular disease, kidney disease and blindness.

Aside from keeping blood sugar and insulin levels down, the rodents that received gene therapy also lived longer than obese rodents that did not, Kalra said.

"Currently we do not know if that is due to the correction of the diabetes or many of the diseases associated with diabetes," Kalra said. "It is clinically known that diabetic patients have early onset mortality. If the diabetes is managed, there is an improvement in lifespan."

Martin G. Myers, M.D., Ph.D., an associate professor of medicine and physiology at the University of Michigan Medical School who also studies leptin, said other studies in recent years have shown similar findings, albeit without the use of gene therapy.

"Most of what is in this paper is not surprising," Myers said.

While he noted that it was good to see the leptin was still working in the rodents for the full 15 weeks that UF researchers were conducting the study, Myers said it is unlikely that doctors will employ leptin gene therapy in humans.

Gene therapy would be an ideal treatment because it just takes one shot, Kalra said, adding it is also likely drugs could be developed to simulate leptin's action in a pill form, which is easier to give to patients.

"What we have shown in animals is very effective," Kalra said. "It can be done."

April Frawley Birdwell | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>