Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Reveal How Air Pollutant Helps Pregnant Women with Hypertension

21.09.2006
Nitric oxide (NO) is best known as an air pollutant produced by vehicle emissions and power plants but for pregnant women it is a crucial compound required to avoid hypertension and pre-eclampsia. Now researchers at the University of Warwick's Warwick Medical School have uncovered some of the secrets of what can interfere with the protecting properties of NO for pregnant women.

Pre-eclampsia affects 7-10% of all pregnancies. It causes high blood pressure and protein in the urine in its initial stages but can lead to fits and ultimately death. Its precise cause remains unknown. In severe forms of pre-eclampsia, particularly in early-onset cases that appear before the 34th week of gestation, the foetus suffers from increasing nutritional and respiratory problems, asphyxia and, ultimately, might die. Women who have had pre-eclampsia also seem to be at significantly increased risk of developing cardiovascular disease in later life. The disease is a major health burden worldwide.

Nitric oxide is a gas which is an important signalling molecule in humans. It is one of the few gaseous signalling molecules known and plays an important role in blood pressure control by opening up blood vessels. It is better known as an air pollutant produced by vehicle engines and power plants.

During pregnancy, nitric oxide levels maintain a healthy flow of blood to the baby. When NO levels in the placenta are reduced or the NO is blocked from doing its work the risk of pre-eclampsia can occur. Now researchers at the University of Warwick's Warwick Medical School have uncovered some of the secrets of what can interfere with the protecting properties of NO for pregnant women.

The Warwick Medical School researchers have managed to identify a complex range of problems that affect the way the NO works in the placenta during pre-eclampsia. When the pregnancy is compromised the placenta can also release a hormone called "corticotropin releasing hormone" (CRH - also known as the "stress" hormone). This hormone can directly influence NO production. The Warwick researchers have discovered that in pre-eclampsia there is a fault which does not allow this to occur. This then causes a cascade of signalling abnormalities through a number of protein receptors called GPCRs that prevent activation of the enzyme responsible for NO production.

The researchers also discovered that even if that part of the process works the placenta may still have restricted ability to produce NO in sufficient quantity.

This research has shed an immense amount of light on what can stop this crucial compound from protecting women and their unborn children from pre-eclampsia. Now the Warwick Medical School Researchers are seeking support for research that will target these discoveries with medical interventions that could resolve the problems and allow NO to perform its crucial role. The researchers first hope to target the faulty protein receptors which should activate the enzyme that releases NO.

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

More articles from Health and Medicine:

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

nachricht The strange double life of Dab2
10.01.2017 | University of Miami Miller School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>