Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A plastic pill for periodontal problems

Rutgers scientists today announced a revolutionary new treatment for killing the bacteria that attack gum tissue during periodontal disease, while also promoting healing and the regeneration of tissue and bone around the teeth.

Eight to 12 percent of Americans have periodontal disease serious enough to require some type of advanced treatment, such as surgery. Left untreated, the condition can lead to tooth loss.

The breakthrough technology – a polymer-based drug delivery system that may be implanted in pockets between the teeth and the gum – developed at Rutgers, The State University of New Jersey, was presented at the 232nd National Meeting of the American Chemical Society in San Francisco by Michelle Johnson, a graduate student in the research group of paper co-author Kathryn Uhrich, a professor of chemistry and chemical biology at Rutgers.

"There has never been anything like this available to clinicians and it will certainly find a very prominent role in periodontal therapy in the future," said Mark Reynolds, chair of the department of periodontics at the University of Maryland Dental School, who collaborates with Uhrich on the research.

The new polymer or "plastic" material, when inserted between tooth and diseased gum, treats the bacterial infection, inflammation and pain with pharmaceuticals incorporated into the material itself, Johnson explained. It employs salicylic acid, the active ingredient in aspirin, for the swelling and discomfort, and three antimicrobials each with a different release rate – compounds of clindamycin, chlorhexidrine and minocycline.

Once implanted, the polymer gradually breaks down to release the salicylic acid, which relieves pain and reduces inflammation, and the antimicrobials which inhibit infection at a sustained pace, Uhrich added.

Periodontal disease occurs when plaque that forms on the tooth surface spreads and grows below the gum line. The plaque carries with it bacteria that can irritate, inflame and eventually destroy the tissues and bone that support the teeth. Spaces or pockets form between the teeth and gums and become sites of infection which can damage the supporting structures of the teeth.

Reynolds explained that after removing the damaged tissue, periodontists often try to separate the gum tissue from the bone and tooth structure using barrier materials that remain in place for about six weeks to facilitate healing and tissue regeneration.

"The polymers that Kathryn Uhrich and her team have pioneered and developed are unique in that they can serve as barriers while also repressing any inflammatory response, setting the stage for nature to not only heal these areas, but also to regenerate the tissues that have been lost to the disease," Reynolds said.

Reynolds is testing the new biomaterial in a number of animal systems to assess tissue reactions and better define the timeline of its decomposition and drug release. He says that human clinical trials may be two or more years away depending on approvals from the U.S. Food and Drug Administration.

Joseph Blumberg | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>