Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A plastic pill for periodontal problems

18.09.2006
Rutgers scientists today announced a revolutionary new treatment for killing the bacteria that attack gum tissue during periodontal disease, while also promoting healing and the regeneration of tissue and bone around the teeth.

Eight to 12 percent of Americans have periodontal disease serious enough to require some type of advanced treatment, such as surgery. Left untreated, the condition can lead to tooth loss.

The breakthrough technology – a polymer-based drug delivery system that may be implanted in pockets between the teeth and the gum – developed at Rutgers, The State University of New Jersey, was presented at the 232nd National Meeting of the American Chemical Society in San Francisco by Michelle Johnson, a graduate student in the research group of paper co-author Kathryn Uhrich, a professor of chemistry and chemical biology at Rutgers.

"There has never been anything like this available to clinicians and it will certainly find a very prominent role in periodontal therapy in the future," said Mark Reynolds, chair of the department of periodontics at the University of Maryland Dental School, who collaborates with Uhrich on the research.

The new polymer or "plastic" material, when inserted between tooth and diseased gum, treats the bacterial infection, inflammation and pain with pharmaceuticals incorporated into the material itself, Johnson explained. It employs salicylic acid, the active ingredient in aspirin, for the swelling and discomfort, and three antimicrobials each with a different release rate – compounds of clindamycin, chlorhexidrine and minocycline.

Once implanted, the polymer gradually breaks down to release the salicylic acid, which relieves pain and reduces inflammation, and the antimicrobials which inhibit infection at a sustained pace, Uhrich added.

Periodontal disease occurs when plaque that forms on the tooth surface spreads and grows below the gum line. The plaque carries with it bacteria that can irritate, inflame and eventually destroy the tissues and bone that support the teeth. Spaces or pockets form between the teeth and gums and become sites of infection which can damage the supporting structures of the teeth.

Reynolds explained that after removing the damaged tissue, periodontists often try to separate the gum tissue from the bone and tooth structure using barrier materials that remain in place for about six weeks to facilitate healing and tissue regeneration.

"The polymers that Kathryn Uhrich and her team have pioneered and developed are unique in that they can serve as barriers while also repressing any inflammatory response, setting the stage for nature to not only heal these areas, but also to regenerate the tissues that have been lost to the disease," Reynolds said.

Reynolds is testing the new biomaterial in a number of animal systems to assess tissue reactions and better define the timeline of its decomposition and drug release. He says that human clinical trials may be two or more years away depending on approvals from the U.S. Food and Drug Administration.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

Scientists create innovative new 'green' concrete using graphene

24.04.2018 | Materials Sciences

BAM@Hannover Messe: innovative 3D printing method for space flight

24.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>