Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A plastic pill for periodontal problems

18.09.2006
Rutgers scientists today announced a revolutionary new treatment for killing the bacteria that attack gum tissue during periodontal disease, while also promoting healing and the regeneration of tissue and bone around the teeth.

Eight to 12 percent of Americans have periodontal disease serious enough to require some type of advanced treatment, such as surgery. Left untreated, the condition can lead to tooth loss.

The breakthrough technology – a polymer-based drug delivery system that may be implanted in pockets between the teeth and the gum – developed at Rutgers, The State University of New Jersey, was presented at the 232nd National Meeting of the American Chemical Society in San Francisco by Michelle Johnson, a graduate student in the research group of paper co-author Kathryn Uhrich, a professor of chemistry and chemical biology at Rutgers.

"There has never been anything like this available to clinicians and it will certainly find a very prominent role in periodontal therapy in the future," said Mark Reynolds, chair of the department of periodontics at the University of Maryland Dental School, who collaborates with Uhrich on the research.

The new polymer or "plastic" material, when inserted between tooth and diseased gum, treats the bacterial infection, inflammation and pain with pharmaceuticals incorporated into the material itself, Johnson explained. It employs salicylic acid, the active ingredient in aspirin, for the swelling and discomfort, and three antimicrobials each with a different release rate – compounds of clindamycin, chlorhexidrine and minocycline.

Once implanted, the polymer gradually breaks down to release the salicylic acid, which relieves pain and reduces inflammation, and the antimicrobials which inhibit infection at a sustained pace, Uhrich added.

Periodontal disease occurs when plaque that forms on the tooth surface spreads and grows below the gum line. The plaque carries with it bacteria that can irritate, inflame and eventually destroy the tissues and bone that support the teeth. Spaces or pockets form between the teeth and gums and become sites of infection which can damage the supporting structures of the teeth.

Reynolds explained that after removing the damaged tissue, periodontists often try to separate the gum tissue from the bone and tooth structure using barrier materials that remain in place for about six weeks to facilitate healing and tissue regeneration.

"The polymers that Kathryn Uhrich and her team have pioneered and developed are unique in that they can serve as barriers while also repressing any inflammatory response, setting the stage for nature to not only heal these areas, but also to regenerate the tissues that have been lost to the disease," Reynolds said.

Reynolds is testing the new biomaterial in a number of animal systems to assess tissue reactions and better define the timeline of its decomposition and drug release. He says that human clinical trials may be two or more years away depending on approvals from the U.S. Food and Drug Administration.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>