Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spleen may be target of successful therapy for lupus

15.09.2006
Researchers at the University of California, San Diego (UCSD) School of Medicine have found clues that might lead to better treatment of lupus, showing that the spleen is the likely source of cells that are the origin of the disease. Michael Karin, Ph.D., professor pharmacology in UCSD’s Laboratory of Gene Regulation and Signal Transduction, led the study to be published on line September 14 in advance of publication in the September issue of the journal Immunity.

The researchers worked with transgenic mouse models that were engineered to overproduce a special cytokine – a hormone which regulates immunity – called BAFF, a B-cell activating factor that is elevated in patients with lupus and other autoimmune diseases. The B cells are responsible for the production of antibodies in the body. Mice overproducing BAFF develop systemic lupus erythematosis (SLE)-like disease, very similar to human lupus, which is estimated to affect one in a thousand Americans, 90 percent of them women.

The research study showed that that a compartment of the spleen called the marginal zone is where the majority of autoreactive B cells are found. The scientists transplanted immune cells from the spleen's marginal zone in the mice with lupus into mice without their own B cells, and found that they immediately gave rise to pathogenic antibodies.

When the enlarged marginal zone cell pool in the mouse model was removed or reduced, the disease was prevented or strongly diminished.

"The study proved without a doubt that the transplanted B cells were the source of lupus auto-antibodies," said Gregg Silverman, M.D. professor of medicine in UCSD’s Translational Oncology Program and contributor to the paper. "Identifying the spleen’s marginal zone as the likely source of these tissue-damaging antibodies gives us important insights into the cause of lupus as well as a target for new therapies."

The researchers also studied B-cell activation in two signalling pathways, called the classical and alternative NF-ÿB pathways, that contribute to the development of lupus. The scientists discovered that while each pathway is required for the pathogenesis of antibodies that cause the autoimmune disease, neither works alone.

"Either pathway would be a suitable target for therapy,” said Karin, whose lab first identified the two NF-ÿB pathways several years ago. "Both are critical to production of pathogenic B cells that destroy the body's own cells in lupus." However, he added that targeting one of the NF-ÿB pathways called the classical pathway would eliminate B cells throughout the entire body. This is the drawback of other therapies currently recommended for lupus patients, as they destroy the body’s immune cells which are needed to fight off other infection.

Karin added that genetic manipulation of the animals, or the timing of the splenectomy in the cycle of the lupus-like disease might have contributed to the outcome. Therefore more research is needed to draw a definite conclusion, though their studies ruled out the lymph nodes or the bone marrow – where B cells are born – as contributors to the effect.

"The study tells us important things about the pathogenesis of disease in a mouse model that is very close to human lupus," Karin said. In mice, as in humans, the disease leads to overproduction of anti-DNA antibodies and immune deposits in the kidneys, which can result in fatal kidney damage.

Lupus is a chronic autoimmune disease that, for unknown reasons, causes the immune system to attack the body's own tissue and organs, including the joints, kidneys, heart, lungs, brain, blood, or skin. Difficult to diagnose and treat, patients may see several physicians before learning they have lupus. The disease is much more common in women than men, usually is first diagnosed between the ages of 15 and 44 years, and is two to three times more common in persons of color. Patients often take many different medications to control lupus, which has symptoms ranging from mild to life-threatening, including aching or swollen joints, skin rashes, kidney damage, anemia and hair loss.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>