Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spleen may be target of successful therapy for lupus

15.09.2006
Researchers at the University of California, San Diego (UCSD) School of Medicine have found clues that might lead to better treatment of lupus, showing that the spleen is the likely source of cells that are the origin of the disease. Michael Karin, Ph.D., professor pharmacology in UCSD’s Laboratory of Gene Regulation and Signal Transduction, led the study to be published on line September 14 in advance of publication in the September issue of the journal Immunity.

The researchers worked with transgenic mouse models that were engineered to overproduce a special cytokine – a hormone which regulates immunity – called BAFF, a B-cell activating factor that is elevated in patients with lupus and other autoimmune diseases. The B cells are responsible for the production of antibodies in the body. Mice overproducing BAFF develop systemic lupus erythematosis (SLE)-like disease, very similar to human lupus, which is estimated to affect one in a thousand Americans, 90 percent of them women.

The research study showed that that a compartment of the spleen called the marginal zone is where the majority of autoreactive B cells are found. The scientists transplanted immune cells from the spleen's marginal zone in the mice with lupus into mice without their own B cells, and found that they immediately gave rise to pathogenic antibodies.

When the enlarged marginal zone cell pool in the mouse model was removed or reduced, the disease was prevented or strongly diminished.

"The study proved without a doubt that the transplanted B cells were the source of lupus auto-antibodies," said Gregg Silverman, M.D. professor of medicine in UCSD’s Translational Oncology Program and contributor to the paper. "Identifying the spleen’s marginal zone as the likely source of these tissue-damaging antibodies gives us important insights into the cause of lupus as well as a target for new therapies."

The researchers also studied B-cell activation in two signalling pathways, called the classical and alternative NF-ÿB pathways, that contribute to the development of lupus. The scientists discovered that while each pathway is required for the pathogenesis of antibodies that cause the autoimmune disease, neither works alone.

"Either pathway would be a suitable target for therapy,” said Karin, whose lab first identified the two NF-ÿB pathways several years ago. "Both are critical to production of pathogenic B cells that destroy the body's own cells in lupus." However, he added that targeting one of the NF-ÿB pathways called the classical pathway would eliminate B cells throughout the entire body. This is the drawback of other therapies currently recommended for lupus patients, as they destroy the body’s immune cells which are needed to fight off other infection.

Karin added that genetic manipulation of the animals, or the timing of the splenectomy in the cycle of the lupus-like disease might have contributed to the outcome. Therefore more research is needed to draw a definite conclusion, though their studies ruled out the lymph nodes or the bone marrow – where B cells are born – as contributors to the effect.

"The study tells us important things about the pathogenesis of disease in a mouse model that is very close to human lupus," Karin said. In mice, as in humans, the disease leads to overproduction of anti-DNA antibodies and immune deposits in the kidneys, which can result in fatal kidney damage.

Lupus is a chronic autoimmune disease that, for unknown reasons, causes the immune system to attack the body's own tissue and organs, including the joints, kidneys, heart, lungs, brain, blood, or skin. Difficult to diagnose and treat, patients may see several physicians before learning they have lupus. The disease is much more common in women than men, usually is first diagnosed between the ages of 15 and 44 years, and is two to three times more common in persons of color. Patients often take many different medications to control lupus, which has symptoms ranging from mild to life-threatening, including aching or swollen joints, skin rashes, kidney damage, anemia and hair loss.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>