Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean water project hit by funding drought

12.09.2006
British engineers have developed a simple water filter which could save thousands of lives in developing countries.

Unlike the commercial water filters currently supplied by some charities, the unit designed by Dr Paul Sallis and colleagues at Newcastle University can easily be made by local craftsmen and women, using local materials.

The 'low tech' manufacturing process overcomes the problems of having to persuade and educate low-income families to use water filters and of having to order costly spare parts when a filter breaks down.

But after successful trials, the project has not been widely implemented because it does not qualify for support from the development agencies, falling into a 'no man's land' between research and commercial products.

Charities estimate that more than a billion people do not have access to safe drinking water. In some parts of Africa, water-borne diseases such as cholera, dysentery and viral diarrhoea claim the lives of one in four children.

The United Nations has deemed such infant mortality rates as unacceptable. One of its eight Millennium Development Goals is to 'reduce by two-thirds the mortality rate among children under five'. This goal is one of the keynote topics at the 2006 World Water Congress in Beijing, today, Monday 11 September.

The Newcastle project began after a group of postgraduate civil engineering students visited Ghana, Kenya and Malaysia and recognised the huge benefits that sustainable water filtration could have on health. One of the students, Matt Simpson, decided to devote his doctoral research project to this topic.
Working in the laboratories at Newcastle University, he tested many techniques and eventually discovered that a mixture of clay and crop residues - such as rice husks or bran - created the ideal ceramic filter, when fired at 700 to 1,000C.

At these temperatures the crop residue decomposes, releasing carbon dioxide gas which forms microscopic pores in the ceramic material exactly the right size to trap bacteria and viruses but allow water to pass through.

Tests showed that the filter trapped 99.99 per cent of pathogens - equal to the efficiency of commercial filters which rely upon the addition of biocides, such as compounds of silver, to the clay before firing. This makes them more expensive and requires more advanced technology in the manufacturing process.

Low-income families in developing countries cannot afford to buy commercial water filters. Some charities distribute them free of charge but uptake is low and they tend to be discarded when new parts are needed.

The Newcastle filter, however, can be made by local potters using local materials - and even the most primitive open-air 'bonfire kiln', in which the pottery is fired in a rack surrounded by burning wood, can reach sufficiently high temperatures.

Mr Simpson has since spent a six months placement at the International Centre for Diarrhoeal Disease Research in Bangladesh, training village potters to make the filters. The project proved how easily the technology could be adopted. The placement was funded by a £20,000 grant from HSBC Holdings PLC, which supports environmental research at Newcastle University as part of its commitment to 'green' technologies and sustainable development.

Newcastle University is one of the founding members of the HSBC-funded Partnership in Environmental Innovation (PEI), which has also seen the establishment of the first Chair of Environmental Technologies and Geothermal Energy at Newcastle, Professor Paul Younger.

Dr Sallis, a lecturer in the university's School of Civil Engineering and Geosciences and a leading expert in water treatment technologies, said: 'Pottery manufacture is one of the world's oldest professions and most places have the basic materials and skills required to manufacture simple ceramics. It takes only two hours to teach a potter to make one of our filters from the resources already available in their village.'

Having proven the theory, the next step would be to launch a training and education programme, so that village potters start making the filters and local people recognise the benefits of using them. However, the resources necessary to launch such a programme have so far proved impossible to obtain.

Dr Sallis said development agencies are swamped with applications for support and tend to select projects with economic development potential, for example a product which local craftspeople can make and sell for a profit.

'It is very difficult for us to demonstrate that local people could make a profit from our water filters,' he said. 'To be sustainable, we need to spread knowledge and educate people. This would involve local potters showing each other how to make the filters, which is contrary to the commercial principle of keeping your methods secret from your competitors.'

In May 2006, the project reached the last 125 out of 2,500 applications for a grant award from the World Bank but in the end just failed to get funding .
Dr Sallis said: 'Funds are available for research and for the distribution of finished products but unfortunately we fall in a no-man's land between the two.'

'Ceramic water filters offer great potential for reducing the pathogen intake by people with low quality drinking water, and are therefore one of the most promising options to address United Nations Millennium Development Goal targets for reducing infant mortality.'

Dr Paul Sallis | alfa
Further information:
http://www.ncl.ac.uk

More articles from Health and Medicine:

nachricht How cancer metastasis happens: Researchers reveal a key mechanism
19.01.2018 | Weill Cornell Medicine

nachricht Researchers identify new way to unmask melanoma cells to the immune system
17.01.2018 | Duke University Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>