Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appetite – it’s a brain thing

08.09.2006
The regulation of body weight and energy balance in animals depends on the central nervous system capacity to read the body’s metabolic state and respond accordingly.

But how does the brain process and integrate information to regulate feeding behaviour in order to sustain the energetic needs of the organism? In an article now published on the journal "Neuron", scientists from the US and Portugal study the brain activity of rats during a feeding cycle - consisting of an episode of hunger, satiety and hunger again - and found that, while individual neurons respond to parts of the cycle, the pooled activity of the neurons in entire brain areas is always high throughout hunger, diminishing after the animal is fed and satiated, and again increases when the animal is hungry again, a variation that most probably underlies the activation of the mechanism associated with feeding motivation in these animals.

For survival, the individuals of a species have to carry vital functions such as eating, drinking, having sex or present maternal behaviour. To assure this happens, during evolution, certain areas in the brain have developed to provide strong feelings of pleasure as a “reward” for carrying out these vital functions.

A typical example is the motivation to eat, which is balanced between states of hunger - when eating is accompanied by a sensation of pleasure - and satiation - when the brain senses a biochemical change and stops the feeding process.

Previous research has shown that, during hunger, several areas in the brain seem to show increased neural activity which, after eating, is reduced. These experiments, however, were limited because, on one hand the animals were never allowed to eat freely as the food was controlled by the scientist, and on the other hand a whole cycle of hunger, satiety and new episode of hunger was never fully studied.

Trying to understand better the brain process that leads to the motivation to start and end the feeding process Ivan E. de Araujo, Sidney A. Simon and colleagues at Duke University Medical Center in North Carolina, US and at Porto University, Portugal decided to look at rats’ brain activity in a more ”natural” experimental situation – the animals were allowed to decide when to start and end eating, and their brains were analysed throughout entire hunger-satiety-hunger cycles.

The researchers measured neural activity in four brain areas known to be associated with feeding motivation - lateral hypothalamus, orbitofrontal complex, basolateral amygdale and insular cortex - during a full feeding cycle in which the rats were hungry, fed on sugary water until satiated and then grew hungry again. The activity of individual neurons within these areas was also analysed. The levels of glucose and insulin in the blood were also measured during the experiments.

By correlating the different stages of feeding (hunger - satiety –hunger) with brain activity, the researchers found that the majority of individual neurons only responded to a particular metabolic state (for example low or high glucose levels but not to both) within the full feeding cycle. By contrast, the whole activity of any of the four brain areas analysed, consistently increase during the hunger episodes and decrease during satiety allowing an accurate prediction of the duration, start and end of the different stages. These results show that the mechanism regulating feed motivation is distributed across different brain areas, forming a connected circuit that shares information on sensorial and motivational aspects of feeding collected from a multitude of individual neurons.

Araujo, Simon and colleagues also found that, from the four brain areas studied, lateral hypothalamus seemed to be the most important for eating motivation, as its neural activity had the highest correlation with the changes within the feeding cycle. This result agrees with previous observations where single lesions in this brain area can automatically lead to radical changes in appetite whether leading to hyperphagia – abnormally high food intake or, hypophagia- reduced food intake. This research contributes to a better understanding of the brain mechanic behind feeding stimulus, a particularly important issue in view of the current world epidemic of obesity.

Piece researched and written by: Catarina Amorim (catarina.amorim@linacre.ox.ac.uk)

Catarina Amorim | alfa
Further information:
http://www.neuron.org/content/article/abstract?uid=PIIS0896627306005496

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>