Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes Slows Nerve Recovery After Heart Transplant

07.09.2006
Understanding Nerve Abnormalities May Guide Treatment Aimed at Reducing Cardiac Risk With Diabetes Mellitus Patients

Diabetes has a detrimental effect on a person’s ability to recover from a heart transplant, notes a study in the September Journal of Nuclear Medicine.

“Using positron emission tomography (PET) and the transplanted heart as a very specific model to study the regenerative capacity of the heart’s sympathetic nervous system, we determined that reinnervation—or the heart’s ability to develop new nerves to replace damaged ones—is slower in diabetic patients,” said Frank M. Bengel, a visiting associate professor of radiology and the director of cardiovascular nuclear medicine at Johns Hopkins Medicine’s Russell H. Morgan Department of Radiology and Radiological Science in Baltimore, Md. “Our results confirm a detrimental effect of diabetes on the potential for recovery of sympathetic nerve fibers of the heart,” added the co-author of “Effect of Diabetes Mellitus on Sympathetic Neuronal Regeneration Studied in the Model of Transplant Reinnervation.”

“A better understanding of the importance of nervous system abnormalities and an imaging technique to precisely characterize nerve damage may be of value to guide future therapeutic efforts aimed at reducing cardiac risk with diabetes mellitus patients,” explained Bengel, who was an associate professor at the Technical University of Munich, where the study was performed, prior to his move to Johns Hopkins. “Even if a transplant recipient is suffering from diabetes, there is still a chance for reinnervation—just at a slower speed,” he added. “Unfortunately, there are no techniques developed yet that speed the nerve regeneration process,” he said.

Currently, nuclear medicine techniques (such as PET) are the only imaging techniques that can measure the presence and function of the sympathetic nervous system of the heart, said Bengel. “There are invasive methods that allow for the measurement of neurotransmitters released to the blood, offering indirect conclusions about the presence, storage and release of neurotransmitters from neurons. These methods require complicated and laborious sampling of blood from coronary arteries and veins,” he added.

Diabetes mellitus is a chronic disease that occurs when the pancreas does not produce enough insulin or when the body cannot effectively use the insulin it produces. Such a deficiency results in increased concentrations of glucose (sugar) in the blood, which can damage many of the body’s systems. Diabetes mellitus is a known major risk factor of heart disease, negatively affecting the heart’s contraction and rhythm, said Bengel.

Future research will need to focus on how regeneration of sympathetic nerves can be facilitated and how changes of the sympathetic nerve integrity in the heart are interrelated with changes of prognosis and outcome of diseases like diabetes mellitus, said Bengel.

“Effect of Diabetes Mellitus on Sympathetic Neuronal Regeneration Studied in the Model of Transplant Reinnervation” appears in the September issue of the Journal of Nuclear Medicine, which is published by SNM. Other co-authors include Peter Ueberfuhr and Bruno Reichart, Ludwig-Maximilians University in Munich, Germany; and Dominik Schäfer, Stephan G. Nekolla and Markus Schwaiger, all with the Technical University of Munich, Germany.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>