Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diabetes Slows Nerve Recovery After Heart Transplant

07.09.2006
Understanding Nerve Abnormalities May Guide Treatment Aimed at Reducing Cardiac Risk With Diabetes Mellitus Patients

Diabetes has a detrimental effect on a person’s ability to recover from a heart transplant, notes a study in the September Journal of Nuclear Medicine.

“Using positron emission tomography (PET) and the transplanted heart as a very specific model to study the regenerative capacity of the heart’s sympathetic nervous system, we determined that reinnervation—or the heart’s ability to develop new nerves to replace damaged ones—is slower in diabetic patients,” said Frank M. Bengel, a visiting associate professor of radiology and the director of cardiovascular nuclear medicine at Johns Hopkins Medicine’s Russell H. Morgan Department of Radiology and Radiological Science in Baltimore, Md. “Our results confirm a detrimental effect of diabetes on the potential for recovery of sympathetic nerve fibers of the heart,” added the co-author of “Effect of Diabetes Mellitus on Sympathetic Neuronal Regeneration Studied in the Model of Transplant Reinnervation.”

“A better understanding of the importance of nervous system abnormalities and an imaging technique to precisely characterize nerve damage may be of value to guide future therapeutic efforts aimed at reducing cardiac risk with diabetes mellitus patients,” explained Bengel, who was an associate professor at the Technical University of Munich, where the study was performed, prior to his move to Johns Hopkins. “Even if a transplant recipient is suffering from diabetes, there is still a chance for reinnervation—just at a slower speed,” he added. “Unfortunately, there are no techniques developed yet that speed the nerve regeneration process,” he said.

Currently, nuclear medicine techniques (such as PET) are the only imaging techniques that can measure the presence and function of the sympathetic nervous system of the heart, said Bengel. “There are invasive methods that allow for the measurement of neurotransmitters released to the blood, offering indirect conclusions about the presence, storage and release of neurotransmitters from neurons. These methods require complicated and laborious sampling of blood from coronary arteries and veins,” he added.

Diabetes mellitus is a chronic disease that occurs when the pancreas does not produce enough insulin or when the body cannot effectively use the insulin it produces. Such a deficiency results in increased concentrations of glucose (sugar) in the blood, which can damage many of the body’s systems. Diabetes mellitus is a known major risk factor of heart disease, negatively affecting the heart’s contraction and rhythm, said Bengel.

Future research will need to focus on how regeneration of sympathetic nerves can be facilitated and how changes of the sympathetic nerve integrity in the heart are interrelated with changes of prognosis and outcome of diseases like diabetes mellitus, said Bengel.

“Effect of Diabetes Mellitus on Sympathetic Neuronal Regeneration Studied in the Model of Transplant Reinnervation” appears in the September issue of the Journal of Nuclear Medicine, which is published by SNM. Other co-authors include Peter Ueberfuhr and Bruno Reichart, Ludwig-Maximilians University in Munich, Germany; and Dominik Schäfer, Stephan G. Nekolla and Markus Schwaiger, all with the Technical University of Munich, Germany.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>