Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser striking the tumor: new outlook

04.09.2006
Is it possible to ablate malignant neoplasm with the help of laser in such a way that healthy tissues are not damaged? In other words, is it possible to perform an operation, avoiding an incision, bleeding or concomitant thermal burn, healing up of which is long and difficult? How can the ‘bad’ tissue be destroyed without damaging the ‘good’ tissue, and is it possible at all?

Russian researchers expect to get answers to these and other questions connected with laser application in medical practice via ascertaining how laser high-intensity impulses act on biotissues, first of all – on pathological tissues. The investigation involves specialists of three biggest national scientific centers.

These are the Troitsk Institute of Innovation and Thermonuclear Investigations, the Blokhin Russian Oncological Scientific Center and the Federal Nuclear Center in Sarov. The subject of inquiry is the tumors located in the ‘near-surface’ skin layers. Specialists are well aware that it is here that up to 95 percent of all malignant skin diseases develop, including mortally dangerous black cancer.

The authors’ expectations are based on the fact that malignant cells and respectively tissues differ in some way from normal ones. Among the differences, two are most important in this case. Firstly, the tumor tissue is as a rule more than ususal penetrated by blood vessels: the tumor grows quickly and therefore needs ‘nourishing diet’. Secondly, uncontrolled dividing tumor cells are characterized by hyperchromatosis of nuclei, i.e., by more intense color. Therefore, one way or another, the tumor differs from its surroundings by spectral characteristics. The researchers decided to take advantage of this fact.

“If the tissue containing malignant cells is affected by a laser impulse of required wave-length, sufficient power and short duration, it can be achieved that the impulse is selectively absorbed and only malignant cells are subsequently destroyed – surrounding healthy cells would not be influenced, explains Ludmila Chernysheva, project manager, main specialist of the direction. To this end, we assume that the impulse should be sufficiently intense, but short, its duration being of several nanoseconds so that macromolecules’ photodisruption took place in the tumor under the impact of radiation, but not macromolecules’ thermal disruption (evaporation or coagulation). By the way, the latter is most important. Otherwise selectivity of influence is lost: both diseased and healthy tissues suffer and there is no guaranty that lesion foci are eliminated completely.

To reveal the optimal irradiation modes - wave-length, power, duration and impulse frequency, under which the effect would be the highest possible but undesirable consequences would be minimal, the authors are planning to act by radiation of different parameters at various biotargets (from standardized test solutions through tissues of laboratory animals). The first experiments have already been carried out, and they bring out clearly that the concept ‘works’.

However, when the impulse duration is decreased, power density increases, which leads to various nonlinear effects. The authors are planning to find out if a short powerful laser impulse possesses (in general and specifically in the modes selected by them) mutagenic and/or cancerogenic action, that is to determine how safe the suggested method is. So far, nobody has dealt systematically with this problem, therefore, the authors believe it necessary to make sure that the method is safe enough.

“As a result, we hope that optimal parameters and laser impact modes will be determined and worked out from the point of view of efficiency and speed of ablation of malignant mass, the lowest degree of injury, cytotoxicity and mutagenic danger, healing times and postoperative complications, as well as ways to deliver radiation into the impact area, continues L.V. Chernysheva. The laser source for oncology and radiation delivery vehicle will be approved on the objects in vitro, and then – in the clinical environment. The determinative selection factor will undoubtedly be the therapeutic effect.”

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>