Scientists discover memory molecule

Scientists at SUNY Downstate Medical Center have discovered a molecular mechanism that maintains memories in the brain. In an article in Science magazine, they demonstrate that by inhibiting the molecule they can erase long-term memories, much as you might erase a computer disc.

Furthermore, erasing the memory from the brain does not prevent the ability to re-learn the memory, much as a cleaned computer disc may be re-used. This finding may some day have applications in treating chronic pain, post-traumatic stress disorder, and memory loss, among other conditions.

The SUNY Downstate researchers reported in the August 25 issue of Science that an enzyme molecule called “protein kinase M zeta” preserves long-term memories through persistent strengthening of synaptic connections between neurons. This is analogous to the mechanism storing information as 0’s and 1’s in a computer’s hard disc. By inhibiting the enzyme, scientists were able to erase a memory that had been stored for one day, or even one month. This function in memory storage is specific to protein kinase M zeta, because inhibiting related molecules did not disrupt memory.

These findings may be useful for the treatment of disorders characterized by the pathological over-strengthening of synaptic connections, such as neuropathic pain, phantom limb syndrome, dystonia, and post-traumatic stress. Conversely, the identification of the core molecular mechanism for memory storage may focus effort on the development of specific therapeutic agents that enhance memory persistence and prevent memory loss. Earlier this year, SUNY Downstate scientists reported that PKMzeta was bound up in the tangles of Alzheimer's disease, thus perhaps blocking its function in memory storage.

Media Contact

Ron Najman EurekAlert!

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors