Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover memory molecule

01.09.2006
Finding May Have Applications in Treating Chronic Pain and Memory Loss

Scientists at SUNY Downstate Medical Center have discovered a molecular mechanism that maintains memories in the brain. In an article in Science magazine, they demonstrate that by inhibiting the molecule they can erase long-term memories, much as you might erase a computer disc.

Furthermore, erasing the memory from the brain does not prevent the ability to re-learn the memory, much as a cleaned computer disc may be re-used. This finding may some day have applications in treating chronic pain, post-traumatic stress disorder, and memory loss, among other conditions.

The SUNY Downstate researchers reported in the August 25 issue of Science that an enzyme molecule called “protein kinase M zeta” preserves long-term memories through persistent strengthening of synaptic connections between neurons. This is analogous to the mechanism storing information as 0’s and 1’s in a computer’s hard disc. By inhibiting the enzyme, scientists were able to erase a memory that had been stored for one day, or even one month. This function in memory storage is specific to protein kinase M zeta, because inhibiting related molecules did not disrupt memory.

These findings may be useful for the treatment of disorders characterized by the pathological over-strengthening of synaptic connections, such as neuropathic pain, phantom limb syndrome, dystonia, and post-traumatic stress. Conversely, the identification of the core molecular mechanism for memory storage may focus effort on the development of specific therapeutic agents that enhance memory persistence and prevent memory loss. Earlier this year, SUNY Downstate scientists reported that PKMzeta was bound up in the tangles of Alzheimer's disease, thus perhaps blocking its function in memory storage.

Ron Najman | EurekAlert!
Further information:
http://www.downstate.edu
http://www.sciencemag.org/cgi/content/full/313/5790/1141

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>