Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New device may improve vision and mobility for people with tunnel vision

31.08.2006
Scientists at Schepens Eye Research Institute, an affiliate of Harvard Medical School, say a visual aid they invented promises to improve the visual abilities of people with tunnel vision.

In the first study to evaluate this small high tech device, the research team saw a significant increase in the effectiveness and speed with which visually impaired individuals found objects. The study -- in the September issue of Investigative Ophthalmology & Visual Science -- shows that this device, which combines a tiny camera, pocket-sized computer and transparent computer display on a pair of glasses, may offer the most effective assistance to date for this patient population.

"We are very pleased with the results of this first evaluation and hope that with further study and refinement, we may soon make this device available for the public," says low vision expert Dr. Eli Peli, the inventor, a senior scientist at Schepens, and a professor of ophthalmology at Harvard Medical School and the senior author of the study,

About one in 200 Americans over age 55 suffers from tunnel vision, as a result of diseases such as retinitis pigmentosa (RP) and glaucoma. RP can begin to affect vision in one's teen years and may become quite severe tunnel vision by middle age. Residual tunnel vision occurs when peripheral or side vision is destroyed, leaving only a small window of central vision. The field of view of these patients can be likened to looking through the tube of a roll of paper towels. Thus, tunnel vision can often cause the individual to bump into or trip over obstacles. "Navigating city streets or buildings can be quite challenging," says Dr. Gang Luo, the study's first author, adding that for a person with tunnel vision, finding a misplaced item is like searching for a key in a dark room using a tiny flashlight. Luo is a senior research associate at Schepens Eye Research Institute and an instructor in Ophthalmology at Harvard Medical School. .

Until now, patients primarily have relied on long canes to warn them of obstacles just in front of them. Glasses that act as reverse binoculars, miniaturizing and pulling in the missing parts of their visual field, were suggested and tried in the past. "The minifying glasses make things so small that detailed visual information is sacrificed, so most patients have given up these spectacles, and the most used type was discontinued last year" says Peli.

Peli's new visual aid – which he developed with the help of MicroOptical Corp. of Westwood, MA– allows the patients to see detailed visual information through the transparent display, while also viewing a superimposed minified outline version of a wider visual field. The tiny computer-video system provides updated outline information 30 times per second. When a patient becomes aware of a possible obstacle or important object in the superimposed outline image, he can move his head and eyes to look directly at the object through the display.

The purpose of the current study was to evaluate how effective the device would be in helping people with tunnel vision when searching for objects. Twelve patients with tunnel vision were asked to find targets that were projected outside their residual visual fields. The researchers found that the search directness was greatly improved for all patients when the device was used. They also found a significant reduction in search time (22%) in patients with a visual field wider than 10º.

Peli and his team believe that the performances of patients could be improved further -with additional training - even for those with smaller visual fields. "All patients only had an hour of training on this device before they were tested," says Luo "The search directness was improved for all subjects, which means they were not searching aimlessly, as they did without the device. However, the speed of head and eye movements was reduced when patients used the yet unfamiliar device. We believe that a few days of training would improve their speed and thus increase their search abilities dramatically."

Based on these results, and following further improvement of the device, the team will test the usefulness of the device by providing it to patients for use in their homes and for outdoor activities.

Patti Jacobs | EurekAlert!
Further information:
http://www.eri.harvard.edu/
http://www.iovs.org

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>