Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Detects Deep Vein Thrombosis

15.01.2002


Radiologists in Nottingham have discovered a fast and accurate technique to diagnose deep vein thrombosis (DVT), which may be particularly helpful to pregnant women and travellers at risk of developing dangerous blood clots.



In a study funded by the British Heart Foundation and published this week in the American journal, the Annals of Internal Medicine, (15 January 2002, volume 136, number 2) Professor Alan Moody and his team in the department of academic radiology at the University of Nottingham used magnetic resonance direct thrombus imaging (MRDTI) to visualize DVT in the legs. One hundred and one patients with suspected DVT, aged between 20 and 95 years, took part in the research to determine the accuracy of MRDTI to diagnose DVT above and below the knee. The results were compared with conventional tests and interpreted by two experts who found that the MRDTI diagnosis was accurate throughout the lower leg venous system.

?The great advantages that MRDTI has over other methods to detect thrombosis are that it is non-invasive, quick and reliable,? said Professor Moody. The scan takes about 12 minutes. Although venography, whereby a catheter is inserted into the veins, has largely been replaced by ultrasound, both techniques rely on changes secondary to a blood clot such as impaired blood flow. These results may be inconclusive. MRDTI is unique because it directly reveals the thrombus ? or clot ? in the legs.


MRDTI is highly sensitive and enables radiologists to pick up the disorder at an early stage even before symptoms are apparent. Action can then be taken to prevent the clot becoming larger and blocking the blood vessel, or the clot breaking off and travelling to the lungs and causing pulmonary embolism. It is well-tolerated by the patient who need not go through a range of tests to rule out DVT.

Although the study did not include pregnant women, Professor Moody is confident that MRDTI could play an important role in monitoring blood clot formation. ?DVT can be a major problem during pregnancy and in a few cases may be fatal,? he said. The clots often originate in the pelvis, which are difficult to detect using ultrasound. ?MRDTI produces good images of the pelvis and the pregnant mum would not need x-rays for us to see the blood vessels.?

DVT in travellers during long-haul flights causes great concern and the speed and reliability of MRDTI could, in the future, identify those most at risk. This will be the focus of Professor Moody?s next phase of research. "This emphasises the need for continued research to determine how it might be possible to prevent DVT so that the best available information can be passed on to the public."

Professor Sir Charles George, medical director of the British Heart Foundation said, ?This is an important development arising from a highly skilled team of researchers. In our quest to reduce the risk of death from heart and circulatory disorders, Professor Moody?s results could have wide implications.?

Currently, there is limited availability of scanners, but as they become more plentiful and scanning speed increases, the technique will become cost-effective. Professor Moody concluded, ?We believe the future application of MRDTI will be enormously valuable in the early diagnosis and monitoring of DVT. This technology potentially could help protect people at risk of a life-threatening venous thrombosis as well as reassuring those who are not in danger?

Elaine Snell | alphagalileo

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>