Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Detects Deep Vein Thrombosis

15.01.2002


Radiologists in Nottingham have discovered a fast and accurate technique to diagnose deep vein thrombosis (DVT), which may be particularly helpful to pregnant women and travellers at risk of developing dangerous blood clots.



In a study funded by the British Heart Foundation and published this week in the American journal, the Annals of Internal Medicine, (15 January 2002, volume 136, number 2) Professor Alan Moody and his team in the department of academic radiology at the University of Nottingham used magnetic resonance direct thrombus imaging (MRDTI) to visualize DVT in the legs. One hundred and one patients with suspected DVT, aged between 20 and 95 years, took part in the research to determine the accuracy of MRDTI to diagnose DVT above and below the knee. The results were compared with conventional tests and interpreted by two experts who found that the MRDTI diagnosis was accurate throughout the lower leg venous system.

?The great advantages that MRDTI has over other methods to detect thrombosis are that it is non-invasive, quick and reliable,? said Professor Moody. The scan takes about 12 minutes. Although venography, whereby a catheter is inserted into the veins, has largely been replaced by ultrasound, both techniques rely on changes secondary to a blood clot such as impaired blood flow. These results may be inconclusive. MRDTI is unique because it directly reveals the thrombus ? or clot ? in the legs.


MRDTI is highly sensitive and enables radiologists to pick up the disorder at an early stage even before symptoms are apparent. Action can then be taken to prevent the clot becoming larger and blocking the blood vessel, or the clot breaking off and travelling to the lungs and causing pulmonary embolism. It is well-tolerated by the patient who need not go through a range of tests to rule out DVT.

Although the study did not include pregnant women, Professor Moody is confident that MRDTI could play an important role in monitoring blood clot formation. ?DVT can be a major problem during pregnancy and in a few cases may be fatal,? he said. The clots often originate in the pelvis, which are difficult to detect using ultrasound. ?MRDTI produces good images of the pelvis and the pregnant mum would not need x-rays for us to see the blood vessels.?

DVT in travellers during long-haul flights causes great concern and the speed and reliability of MRDTI could, in the future, identify those most at risk. This will be the focus of Professor Moody?s next phase of research. "This emphasises the need for continued research to determine how it might be possible to prevent DVT so that the best available information can be passed on to the public."

Professor Sir Charles George, medical director of the British Heart Foundation said, ?This is an important development arising from a highly skilled team of researchers. In our quest to reduce the risk of death from heart and circulatory disorders, Professor Moody?s results could have wide implications.?

Currently, there is limited availability of scanners, but as they become more plentiful and scanning speed increases, the technique will become cost-effective. Professor Moody concluded, ?We believe the future application of MRDTI will be enormously valuable in the early diagnosis and monitoring of DVT. This technology potentially could help protect people at risk of a life-threatening venous thrombosis as well as reassuring those who are not in danger?

Elaine Snell | alphagalileo

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>