Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technique Detects Deep Vein Thrombosis

15.01.2002


Radiologists in Nottingham have discovered a fast and accurate technique to diagnose deep vein thrombosis (DVT), which may be particularly helpful to pregnant women and travellers at risk of developing dangerous blood clots.



In a study funded by the British Heart Foundation and published this week in the American journal, the Annals of Internal Medicine, (15 January 2002, volume 136, number 2) Professor Alan Moody and his team in the department of academic radiology at the University of Nottingham used magnetic resonance direct thrombus imaging (MRDTI) to visualize DVT in the legs. One hundred and one patients with suspected DVT, aged between 20 and 95 years, took part in the research to determine the accuracy of MRDTI to diagnose DVT above and below the knee. The results were compared with conventional tests and interpreted by two experts who found that the MRDTI diagnosis was accurate throughout the lower leg venous system.

?The great advantages that MRDTI has over other methods to detect thrombosis are that it is non-invasive, quick and reliable,? said Professor Moody. The scan takes about 12 minutes. Although venography, whereby a catheter is inserted into the veins, has largely been replaced by ultrasound, both techniques rely on changes secondary to a blood clot such as impaired blood flow. These results may be inconclusive. MRDTI is unique because it directly reveals the thrombus ? or clot ? in the legs.


MRDTI is highly sensitive and enables radiologists to pick up the disorder at an early stage even before symptoms are apparent. Action can then be taken to prevent the clot becoming larger and blocking the blood vessel, or the clot breaking off and travelling to the lungs and causing pulmonary embolism. It is well-tolerated by the patient who need not go through a range of tests to rule out DVT.

Although the study did not include pregnant women, Professor Moody is confident that MRDTI could play an important role in monitoring blood clot formation. ?DVT can be a major problem during pregnancy and in a few cases may be fatal,? he said. The clots often originate in the pelvis, which are difficult to detect using ultrasound. ?MRDTI produces good images of the pelvis and the pregnant mum would not need x-rays for us to see the blood vessels.?

DVT in travellers during long-haul flights causes great concern and the speed and reliability of MRDTI could, in the future, identify those most at risk. This will be the focus of Professor Moody?s next phase of research. "This emphasises the need for continued research to determine how it might be possible to prevent DVT so that the best available information can be passed on to the public."

Professor Sir Charles George, medical director of the British Heart Foundation said, ?This is an important development arising from a highly skilled team of researchers. In our quest to reduce the risk of death from heart and circulatory disorders, Professor Moody?s results could have wide implications.?

Currently, there is limited availability of scanners, but as they become more plentiful and scanning speed increases, the technique will become cost-effective. Professor Moody concluded, ?We believe the future application of MRDTI will be enormously valuable in the early diagnosis and monitoring of DVT. This technology potentially could help protect people at risk of a life-threatening venous thrombosis as well as reassuring those who are not in danger?

Elaine Snell | alphagalileo

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>