A Novel Mechanism of Manganese-Induced Neurological Dysfunction Discovered

Now, researchers from the Johns Hopkins Bloomberg School of Public Health and Thomas Jefferson University have discovered a potential explanation to why these neurological symptoms may occur with manganese exposure. The study found that dopamine neurons in the brain of animals exposed to manganese do not release dopamine when stimulated, suggestive of a dysfunctional dopamine system even though the neurons do not show the damage present with Parkinson’s disease.

Dopamine is a key neurotransmitter necessary for normal motor function. In addition, the researchers found that effects of manganese exposure occurred at blood concentrations in the upper range of levels documented in children and adults with environmental or occupational exposure. The study is published in the online version of the journal Experimental Neurology.

Manganese is a metal used in welding, battery making and in other industrial settings. In Canada, it replaced lead as a gasoline additive. Manganese, in the form of MMT, is approved in the United States as a gasoline additive but is not in use. The symptoms of “manganism” include behavioral and memory disturbances as well as Parkinson’s-like symptoms. Tremors occur with movement as opposed to the resting tremors typical of Parkinson’s disease.

“These findings may provide an explanation for some of the differences between manganism and idiopathic Parkinson’s disease, as well as why patients with manganese-induced neurological symptoms do not seem to respond to traditional Parkinson’s therapies,” said the study’s lead author, Tomás R. Guilarte, PhD, a professor in the Department of Environmental Health Sciences at the Bloomberg School of Public Health.

For the study, researchers observed a group of animals that were given incremental levels of manganese. The animals were monitored for behavioral changes and Positron Emission Tomography (PET) was used to assess various markers of dopamine neurons in the brain. According to the study, in addition to decreased in vivo dopamine release, manganese exposure produced subtle deficits in behavior and fine motor function.

“More work is needed to understand the relationship between the changes in behavior and the alterations in the dopamine system,” explained Jay S. Schneider, professor of pathology, anatomy and cell biology at Thomas Jefferson University and co-author of the study.

“There are other aspects of manganese neurotoxicity that this on-going study is examining that are likely to change the way that we view the risk of manganese exposure today,” said Guilarte.

“Nigrostriatal dopamine system dysfunction and subtle motor deficits in manganese-exposed non-human primates” was written by Tomás R. Guilarte, Ming-Kai Chen, Jennifer L. McGlothan, Tatyana Verina, Dean F. Wong, Yun Zhou, Mohab Alexander, Charles A. Rohde, Tore Syversen, Emmanuel Decamp, Amy Jo Koser, Stephanie Fritz, Heather Gonczi, David W. Anderson and Jay S. Schneider.

Funding was provided by a grant from the National Institute of Environmental Health Sciences.

Public Affairs media contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons at 410-955-6878 or paffairs@jhsph.edu.

Media Contact

Tim Parsons EurekAlert!

More Information:

http://www.jhsph.edu

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors