Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong feelings – latest findings on pain sensitivity

29.08.2006
The recent discovery of the amplification of even low levels of pain has prompted the organisation of an upcoming symposium in Vienna on "Risk Assessment in Pain Therapy". This international expert meeting will aim to optimise pain therapy by taking account of this previously unknown phenomenon. As a result the findings of an Austrian Science Fund FWF project, which were recently published in SCIENCE, may soon be benefiting patients who suffering severe chronic pain.

Constant pain can really get on your nerves – literally! The phenomenon of pain sensitivity enhancement is responsible for this. In the case of persistent pain impulses, it brings about permanent changes in the neurons responsible for transmitting the pain signals. This leads to an increase in pain sensitivity and the sensation of pain can even persist long after the actual pain signals has faded out.

Strong and Weak

Pain sensitivity enhancement is a feature of both weak and strong pain, but the model used to explain how this phenomenon arises is based solely on the testing of strong pain impulses. In reality, though, low level pain does not give rise to all of the neural processes which are postulated by the previous explanatory model.

Now, a team under Prof. Jürgen Sandkühler of the Department of Neurophysiology at the Medical University of Vienna has published findings in the June 2006 edition of SCIENCE which explain the existence of pain amplification even at low levels of pain. Commenting on the research, Prof. Sandkühler said: "We were able to show in a controlled laboratory system that the amplification arises even when the pain is quite weak. We actually used electrical impulses that were 50 times weaker than those previously employed to induce this response. Weak pain signals like these are symptomatic of the healing of wounds and of inflammation."

Prof. Sandkühler's group was also able to identify the cells responsible for this previously unknown phenomenon. They are located in the lamina I of the spinal dorsal horn, and ensure that signals from peripheral pain fibres are transmitted to spinal nerve tracts leading to the brain.

Illuminating Evidence

As part of this large-scale project, Sandkühler and his team were also able to indicate which cellular mechanism is behind low-level pain enhancement. Cells were loaded with dyes which emit light when exposed to sufficient concentrations of calcium ions. This made it possible to show that the concentration of calcium ions in these lamina I cells also increases dramatically in response to weak pain impulses. This is one of a multitude of cases in which calcium ions are involved in cellular signal transmissions. Here, the calcium ions activate enzymes which amplify the pain impulses.

These new findings are of fundamental importance for pain therapy. As Sandkühler put it: "Treating patients with pain killers for a short period of time after an operation, for example, is not an effective means of avoiding pain enhancement. Pain therapy must be continued without interruption until the pain has largely subsided."

In order that these recommendations may be implemented quickly, Prof. Sandkühler is playing a part in organising an expert meeting on the topic. The "Risk Assessment in Pain Therapy" symposium will take place on 10th November 2006, with the aim of evaluating the opportunities and risks of current therapeutic procedures in the light of these new findings. In cooperation with IGOST (the Interdisciplinary Society for Orthopaedic Pain Therapy), Sandkühler has succeeded in attracting representatives of DGSS (the German Society for the Study of Pain), ÖSG (the Austrian Pain Society) and internationally renowned pain researchers to this event in Vienna. This should mean that the findings of this FWF project can soon feed through into specific recommendations for clinical therapy.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv200608-en.html
http://www.prd.at

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>