Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong feelings – latest findings on pain sensitivity

29.08.2006
The recent discovery of the amplification of even low levels of pain has prompted the organisation of an upcoming symposium in Vienna on "Risk Assessment in Pain Therapy". This international expert meeting will aim to optimise pain therapy by taking account of this previously unknown phenomenon. As a result the findings of an Austrian Science Fund FWF project, which were recently published in SCIENCE, may soon be benefiting patients who suffering severe chronic pain.

Constant pain can really get on your nerves – literally! The phenomenon of pain sensitivity enhancement is responsible for this. In the case of persistent pain impulses, it brings about permanent changes in the neurons responsible for transmitting the pain signals. This leads to an increase in pain sensitivity and the sensation of pain can even persist long after the actual pain signals has faded out.

Strong and Weak

Pain sensitivity enhancement is a feature of both weak and strong pain, but the model used to explain how this phenomenon arises is based solely on the testing of strong pain impulses. In reality, though, low level pain does not give rise to all of the neural processes which are postulated by the previous explanatory model.

Now, a team under Prof. Jürgen Sandkühler of the Department of Neurophysiology at the Medical University of Vienna has published findings in the June 2006 edition of SCIENCE which explain the existence of pain amplification even at low levels of pain. Commenting on the research, Prof. Sandkühler said: "We were able to show in a controlled laboratory system that the amplification arises even when the pain is quite weak. We actually used electrical impulses that were 50 times weaker than those previously employed to induce this response. Weak pain signals like these are symptomatic of the healing of wounds and of inflammation."

Prof. Sandkühler's group was also able to identify the cells responsible for this previously unknown phenomenon. They are located in the lamina I of the spinal dorsal horn, and ensure that signals from peripheral pain fibres are transmitted to spinal nerve tracts leading to the brain.

Illuminating Evidence

As part of this large-scale project, Sandkühler and his team were also able to indicate which cellular mechanism is behind low-level pain enhancement. Cells were loaded with dyes which emit light when exposed to sufficient concentrations of calcium ions. This made it possible to show that the concentration of calcium ions in these lamina I cells also increases dramatically in response to weak pain impulses. This is one of a multitude of cases in which calcium ions are involved in cellular signal transmissions. Here, the calcium ions activate enzymes which amplify the pain impulses.

These new findings are of fundamental importance for pain therapy. As Sandkühler put it: "Treating patients with pain killers for a short period of time after an operation, for example, is not an effective means of avoiding pain enhancement. Pain therapy must be continued without interruption until the pain has largely subsided."

In order that these recommendations may be implemented quickly, Prof. Sandkühler is playing a part in organising an expert meeting on the topic. The "Risk Assessment in Pain Therapy" symposium will take place on 10th November 2006, with the aim of evaluating the opportunities and risks of current therapeutic procedures in the light of these new findings. In cooperation with IGOST (the Interdisciplinary Society for Orthopaedic Pain Therapy), Sandkühler has succeeded in attracting representatives of DGSS (the German Society for the Study of Pain), ÖSG (the Austrian Pain Society) and internationally renowned pain researchers to this event in Vienna. This should mean that the findings of this FWF project can soon feed through into specific recommendations for clinical therapy.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv200608-en.html
http://www.prd.at

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>