Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strong feelings – latest findings on pain sensitivity

29.08.2006
The recent discovery of the amplification of even low levels of pain has prompted the organisation of an upcoming symposium in Vienna on "Risk Assessment in Pain Therapy". This international expert meeting will aim to optimise pain therapy by taking account of this previously unknown phenomenon. As a result the findings of an Austrian Science Fund FWF project, which were recently published in SCIENCE, may soon be benefiting patients who suffering severe chronic pain.

Constant pain can really get on your nerves – literally! The phenomenon of pain sensitivity enhancement is responsible for this. In the case of persistent pain impulses, it brings about permanent changes in the neurons responsible for transmitting the pain signals. This leads to an increase in pain sensitivity and the sensation of pain can even persist long after the actual pain signals has faded out.

Strong and Weak

Pain sensitivity enhancement is a feature of both weak and strong pain, but the model used to explain how this phenomenon arises is based solely on the testing of strong pain impulses. In reality, though, low level pain does not give rise to all of the neural processes which are postulated by the previous explanatory model.

Now, a team under Prof. Jürgen Sandkühler of the Department of Neurophysiology at the Medical University of Vienna has published findings in the June 2006 edition of SCIENCE which explain the existence of pain amplification even at low levels of pain. Commenting on the research, Prof. Sandkühler said: "We were able to show in a controlled laboratory system that the amplification arises even when the pain is quite weak. We actually used electrical impulses that were 50 times weaker than those previously employed to induce this response. Weak pain signals like these are symptomatic of the healing of wounds and of inflammation."

Prof. Sandkühler's group was also able to identify the cells responsible for this previously unknown phenomenon. They are located in the lamina I of the spinal dorsal horn, and ensure that signals from peripheral pain fibres are transmitted to spinal nerve tracts leading to the brain.

Illuminating Evidence

As part of this large-scale project, Sandkühler and his team were also able to indicate which cellular mechanism is behind low-level pain enhancement. Cells were loaded with dyes which emit light when exposed to sufficient concentrations of calcium ions. This made it possible to show that the concentration of calcium ions in these lamina I cells also increases dramatically in response to weak pain impulses. This is one of a multitude of cases in which calcium ions are involved in cellular signal transmissions. Here, the calcium ions activate enzymes which amplify the pain impulses.

These new findings are of fundamental importance for pain therapy. As Sandkühler put it: "Treating patients with pain killers for a short period of time after an operation, for example, is not an effective means of avoiding pain enhancement. Pain therapy must be continued without interruption until the pain has largely subsided."

In order that these recommendations may be implemented quickly, Prof. Sandkühler is playing a part in organising an expert meeting on the topic. The "Risk Assessment in Pain Therapy" symposium will take place on 10th November 2006, with the aim of evaluating the opportunities and risks of current therapeutic procedures in the light of these new findings. In cooperation with IGOST (the Interdisciplinary Society for Orthopaedic Pain Therapy), Sandkühler has succeeded in attracting representatives of DGSS (the German Society for the Study of Pain), ÖSG (the Austrian Pain Society) and internationally renowned pain researchers to this event in Vienna. This should mean that the findings of this FWF project can soon feed through into specific recommendations for clinical therapy.

Till C. Jelitto | alfa
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv200608-en.html
http://www.prd.at

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>