Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hirsute-s you, Sir! Could super furry animals provide clues for baldness?

29.08.2006
Scientists looking at mice may have discovered why certain people are hairier than others in what could provide clues as to the reason some men go bald prematurely.

The University of Manchester team has laid bare the molecular processes that determine which embryonic skin cells will form into hair follicles and determine the body's hair pattern.

The findings will be of interest to scientists looking at male-pattern baldness but have more direct implications for people who suffer from ectodermal dysplasia - a range of conditions where skin cells fail to develop into other tissue, including hair follicles.

“During human development, skin cells have the ability to turn into other types of cells to form hair follicles, sweat glands, teeth and nails,” said Dr Denis Headon, who led the research. “Which cells are transformed into hair follicles is determined by three proteins that are produced by our genes.

“Our research has identified how one of these proteins working outside of the cell interacts at a molecular level to determine an individual's hair pattern as the embryonic skin spatially organises itself.”

The team found that cells given the genetic command to become hair follicles will send out signals to neighbouring cells to prevent them from doing likewise, so producing a specific hair pattern. They also demonstrated that by hyperactivating the `hair protein' in embryonic mice, young with considerably more fur than normal were produced.

“We were able to change the number of hair follicles in the embryonic mice while they were developing in the womb,” said Dr Headon, who is based in the University's Faculty of Life Sciences.

“The findings could have implications for sufferers of ectodermal dysplasia that are missing this particular protein and who are unable to develop hair follicles during embryonic development.

“The research - while not directly linked to male-pattern baldness - should be of interest to pharmaceutical companies working in this field as understanding the molecular processes at work during follicle development could provide clues as to why follicles shrink and hair growth diminishes in certain men as they get older.”

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>