Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


MIT proton treatment could replace x-ray use in radiation therapy

Scientists at MIT, collaborating with an industrial team, are creating a proton-shooting system that could revolutionize radiation therapy for cancer. The goal is to get the system installed at major hospitals to supplement, or even replace, the conventional radiation therapy now based on x-rays.

The fundamental idea is to harness the cell-killing power of protons -- the naked nuclei of hydrogen atoms -- to knock off cancer cells before the cells kill the patient. Worldwide, the use of radiation treatment now depends mostly on beams of x-rays, which do kill cancer cells but can also harm many normal cells that are in the way.

What the researchers envision -- and what they're now creating -- is a room-size atomic accelerator costing far less than the existing proton-beam accelerators that shoot subatomic particles into tumors, while minimizing damage to surrounding normal tissues. They expect to have their first hospital system up and running in late 2007.

Physicist Timothy Antaya, a technical supervisor in MIT's Plasma Science and Fusion Center, was deeply involved in developing the new system and is now working to make it a reality. He argues it "could change the primary method of radiation treatment" as the new machines are put in place.

The beauty of protons is that they are quite energetic, but their energy can be controlled so they do less collateral damage to normal tissues, compared to powerful x-ray beams. Protons enter the body through skin and tissue, hit the tumor and stop there, minimizing other damage.

Protons are far more massive than the photons in x-rays, and the x-rays tend to pass directly through tissues and can harm living cells along the entire path. The side effects often include skin burns and other forms of tissue damage.

The new machines, in fact, should allow radiation specialists to deposit a far bigger dose of killing power inside the tumor, but spare more of the surrounding normal tissues. This is expected to increase tumor control rates while minimizing side effects.

Because of their high energy and controllability, protons have been used as anti-cancer bullets in the past, with promising results. But medical centers can't easily come up with the $100 million or more needed to build a proton machine dedicated to this medical use. That's because protons are produced inside the huge, expensive atomic accelerators that are usually employed at major atomic research centers, including national laboratories.

Now, Antaya and his colleagues at MIT and at Still River Systems Inc. think they can provide the new machine for far less money, have it occupy just one moderate-size hospital treatment room, and achieve better results than x-ray therapy. MIT is licensing the technology to Still River Systems.

Industry is already showing acute interest in the new technology because more than half of all cancer patients are now treated with radiation, meaning there are two million radiation patients worldwide. That offers a huge market for an effective new radiation system, and the directors of major cancer research and treatment centers are already enthusiastic, Antaya said.

Antaya recalled that the initial push to build a new proton-making system came from a radiation physicist, Kenneth Gall, at the University of Texas at Dallas Medical Center. "He had a good idea for a single-room proton treatment facility, but hadn't found anyone who thought it was possible to build," Antaya said. Gall is now at Still River Systems as a co-founder.

In his own research experience, Antaya had worked with new types of cyclotrons -- they were called "atom smashers" years ago -- using new "superconducting" coils to generate the necessary magnetic fields. As a result, he could see a "nexus between all the required technologies and how we could pick a reasonable set of properties, with a good chance of being successful," he said.

Building it is quite a challenge, however. "This is an accelerator that's going to be in the room with the patient, so it's quite a difficult design exercise" just in terms of safety issues, Antaya said. But he and his colleagues are betting it will work as expected.

The magnet work of the Technology and Engineering Division of the Plasma Science and Fusion Center, led by senior research engineer Joseph Minervini, is key to the new system. That work has been funded by the U.S. Department of Energy Office of Fusion Energy Science.

Elizabeth A. Thomson | MIT News Office
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>