Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Could a pint of cider help keep the doctor away?

The saying goes that an apple a day keeps the doctor away but now scientists at the University of Glasgow are looking into whether a pint of cider could have the same effect. Researchers have discovered that English cider apples have high levels of phenolics – antioxidants linked to protection against stroke, heart disease and cancer – and are working with volunteers to see whether these health benefits could be passed onto cider drinkers.

In the next few weeks 12 volunteers will each drink a pint of cider, while avoiding all other dietary sources of antioxidants, to give the research team a unique insight into how phenolics are absorbed and metabolised by humans. The research is part of a project funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the National Association of Cider Makers.

Serena Marks, who is leading the study, explains: “Previous research suggests there may be an association between phenolics and protection against some serious diseases, so we are trying to find out how we get phenolics from our diet. We know that apples are high in phenolics and our research shows that cider apples have a higher phenolic content than dessert apples.”

The cider industry has long been interested in phenolics, because these compounds play an important role in the taste and colour of cider, but Marks hopes her research will show that phenolic levels also have a beneficial health role.

So far Marks and her colleagues have looked at the phenolic levels of 19 varieties of English cider apple, 35 varieties of cider and one variety of dessert apple to analyse how and why levels differ and to understand the effects that the cider making process has on the final phenolic content of cider.

They have found that some varieties of apple and some types of cider have higher levels of phenolics than others. Factors that may affect phenolic concentration include the age of the fruit, light exposure, growing region and storage conditions.

Now the scientists have a better understanding of the phenolic content of different apples and cider, the next stage of the research is to analyse how humans absorb these phenolics. To do this, 12 volunteers will drink a 500 ml dose of cider in a controlled environment and samples of their blood and urine will be taken to measure the quantity of phenolics absorbed into the body.

Marks hopes that findings from her work may allow the production methods of cider to be adapted so that the phenolic levels remain high, even after fermentation.

“The more information we can get about phenolics in cider and what happens to them in the body, the more chance we have of positively influencing the phenolic content of English cider, for example, helping manufacturers chose varieties of cider apple which have naturally higher levels of phenolics. This could mean that drinking a glass of cider is not only enjoyable, but a great way for people to naturally increase the amount of phenolics in their diet.”

Professor Nigel Brown, Director of Science and Technology at BBSRC, commented: “The UK is a major producer of cider and the popularity of the drink is increasing. This exciting research shows how scientists and industry can work together to improve manufacturing techniques, not just for economic gain, but as in this instance, to bring about potential health benefits for the public too. The relationship between diet and health is a major strategic interest of the BBSRC.”

Marks is halfway through her three year study which is funded by an Industrial Co-operative Awards in Science and Engineering (CASE) studentship funded by BBSRC and the National Association of Cider Makers.

Matt Goode | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>