Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Could a pint of cider help keep the doctor away?

28.08.2006
The saying goes that an apple a day keeps the doctor away but now scientists at the University of Glasgow are looking into whether a pint of cider could have the same effect. Researchers have discovered that English cider apples have high levels of phenolics – antioxidants linked to protection against stroke, heart disease and cancer – and are working with volunteers to see whether these health benefits could be passed onto cider drinkers.

In the next few weeks 12 volunteers will each drink a pint of cider, while avoiding all other dietary sources of antioxidants, to give the research team a unique insight into how phenolics are absorbed and metabolised by humans. The research is part of a project funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the National Association of Cider Makers.

Serena Marks, who is leading the study, explains: “Previous research suggests there may be an association between phenolics and protection against some serious diseases, so we are trying to find out how we get phenolics from our diet. We know that apples are high in phenolics and our research shows that cider apples have a higher phenolic content than dessert apples.”

The cider industry has long been interested in phenolics, because these compounds play an important role in the taste and colour of cider, but Marks hopes her research will show that phenolic levels also have a beneficial health role.

So far Marks and her colleagues have looked at the phenolic levels of 19 varieties of English cider apple, 35 varieties of cider and one variety of dessert apple to analyse how and why levels differ and to understand the effects that the cider making process has on the final phenolic content of cider.

They have found that some varieties of apple and some types of cider have higher levels of phenolics than others. Factors that may affect phenolic concentration include the age of the fruit, light exposure, growing region and storage conditions.

Now the scientists have a better understanding of the phenolic content of different apples and cider, the next stage of the research is to analyse how humans absorb these phenolics. To do this, 12 volunteers will drink a 500 ml dose of cider in a controlled environment and samples of their blood and urine will be taken to measure the quantity of phenolics absorbed into the body.

Marks hopes that findings from her work may allow the production methods of cider to be adapted so that the phenolic levels remain high, even after fermentation.

“The more information we can get about phenolics in cider and what happens to them in the body, the more chance we have of positively influencing the phenolic content of English cider, for example, helping manufacturers chose varieties of cider apple which have naturally higher levels of phenolics. This could mean that drinking a glass of cider is not only enjoyable, but a great way for people to naturally increase the amount of phenolics in their diet.”

Professor Nigel Brown, Director of Science and Technology at BBSRC, commented: “The UK is a major producer of cider and the popularity of the drink is increasing. This exciting research shows how scientists and industry can work together to improve manufacturing techniques, not just for economic gain, but as in this instance, to bring about potential health benefits for the public too. The relationship between diet and health is a major strategic interest of the BBSRC.”

Marks is halfway through her three year study which is funded by an Industrial Co-operative Awards in Science and Engineering (CASE) studentship funded by BBSRC and the National Association of Cider Makers.

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>