Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cigarette smoke blocks cell repair mechanism

25.08.2006
Cigarette smoke can turn normal breast cells cancerous by blocking their ability to repair themselves, eventually triggering tumor development, University of Florida scientists report.

While some cells nonetheless rally and are able to fix their damaged DNA, many others become unable to access their own cellular first aid kit, according to findings from a UF study published today (Aug. 21) in the journal Oncogene. If they survive long enough to divide and multiply, they pass along their mutations, acquiring malignant properties.

Past research has been controversial. Tobacco smoke contains dozens of cancer-causing chemicals, but until more recently many studies found only weak correlations between smoking and breast cancer risk, or none at all. Those findings are increasingly being challenged by newer studies that are focusing on more than just single chemical components of tobacco, as past research often has done. In the UF study, researchers instead used a tar that contains all of the 4,000 chemicals found in cigarette smoke.

"Our study suggests the mechanism by which this may be happening," said Satya Narayan, Ph.D., an associate professor of anatomy and cell biology at UF's College of Medicine. "This is basically the important finding in our case: We are now describing how cigarette smoke condensate, which is a surrogate for cigarette smoke, can cause DNA damage and can block the DNA repair of a cell or compromise the DNA repair capacity of a cell. That can be detrimental for the cell and can lead to transformation or carcinogenesis."

In their study, funded by the National Institutes of Health and the Miami-based Flight Attendant Medical Research Institute, UF researchers exposed normal breast epithelial cells to cigarette smoke condensate-a tar derived from a machine that literally "smokes" a cigarette in the laboratory-and found the cells acquired mutations characteristic of malignant cells.

The scientists say DNA repair appears to be compromised when chemical components of smoke activate a key gene. That gene interacts with an enzyme that plays a crucial role in repairing damaged DNA, preventing it from doing its job. The cell, despite its mutated form, can then multiply wildly.

A cell with damaged DNA has one of two fates, said Narayan, also a member of the UF Shands Cancer Center.

"Its DNA repair machinery can be enhanced and it can fix the damaged DNA and restore genomic stability, or if the DNA repair machinery becomes compromised within the cell, then it can lead to an accumulation of mutations because the DNA is not fixed before the cell begins to divide," he said. "The mutation then becomes a permanent part of the genome and causes genomic instability, and genomic instability can bring about several cellular dysfunctions, and one of them can lead to tumor formation."

Other UF research led by Xingming Deng, M.D., Ph.D., and published last month in the Journal of Biological Chemistry revealed that nicotine activates a protein in cancer cells that helps them live long, spread to new sites and grow resistant to chemotherapy.

Narayan's team has previously studied cells that were exposed to the chemicals found in cigarette smoke yet did not die. In general, about two-thirds of these cells will be growth-retarded, and some actually acquire cancer-like characteristics, he said.

"Some of these cells that survive are really acquiring true mutagenic characteristics," Narayan said. "A defect in only one cell is important for growth of a full-blown tumor. You don't need 1,000 or 1 million cells to be affected. Only a single cell which may have genomic instability due to compromised DNA repair capacity of the cell can be sufficient for a tumor to develop. That has to be considered also when we do these kinds of studies."

Narayan said the next step will be to find ways to manipulate cells' capacity for DNA repair and to prevent tumor formation.

Meanwhile, he cautions people to avoid smoking, especially teenagers. A study last year found teenage smokers are at especially high risk of breast cancer development later in life, he said.

"Teenagers should realize they are inhaling 4,000 chemicals, and these chemicals can do so much harm in the body, not only posing a breast cancer risk but for so many other things," Narayan said. "The consequence of these chemicals is not apparent in one day or two days or in months; it takes years and years for cancers to develop. Once the gene is damaged and sitting there it's going to provide some harmful effect later on."

Jose Russo, M.D., a researcher at the Fox Chase Cancer Center in Philadelphia who has studied how breast epithelial cells transform after exposure to the chemical benzo[a]pyrine, which is found in tobacco smoke, called the UF findings very interesting.

"We found significant alteration in many of the chromosomes in these cells induced by the effect of benzo[a]pyrine," Russo said. "We were the first ones to demonstrate in normal-like epithelial cells this compound produced a transformation. Cigarette smoke condensate contains more than one compound, so the UF experiment is more similar to the way any human being would be exposed to the carcinogens. It mimics the human situation more closely."

Melanie Fridl Ross | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>