Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers make a major strategic breakthrough in controling the AIDS virus

Dr. Rafick-Pierre Sékaly and his team succeed in preventing the HIV virus from making immune system cells dysfunctional

A team of researchers from the Université de Montréal and the Centre hospitalier de l'Université de Montréal (CHUM) have announced an important breakthrough in fighting the human immunodeficiency virus (HIV). For the first time, scientists have identified a defect in the immune response to HIV and found a way to correct the flaw. Dr. Rafick-Pierre Sékaly, an eminent researcher in cell biology, immunology, and virology, has confirmed the identification of a new therapeutic target (the PD-1 protein) that restores the function of the T cells whose role is to eliminate cells infected with the virus. This constitutes a major breakthrough, opening new prospects for the development of therapeutic strategies for controlling HIV infection. The research findings appear in today's issue of the journal Nature Medicine.

Dr. Sékaly explained that "immune system cells made non-functional by HIV can be identified by the presence of a protein that is significantly overexpressed when infected by the virus." In fact, high levels of the protein are associated with a more serious dysfunction. "The most important discovery made in this study arises from the fact that by stimulating this protein, we succeeded in preventing the virus from making immune system cells dysfunctional," he added.

The findings were simultaneously reproduced by two other laboratories – the labs headed by Dr. Bruce Walker at Harvard and Dr. Richard Koup at the NIH. "It's a rare occurrence for three teams to work together on attacking a major problem. Up until now, the virus has been more or less invincible. By combining our efforts, we found the missing link that may enable us to defeat the virus," noted Dr. Sékaly. Discussions with partners are also underway to translate these research findings into clinical trials, which could start during the coming year.

Thanks to the joint efforts of the Université de Montréal, the CHUM Research Centre, Génome Québec, Genome Canada, the Canadian Institutes of Health Research (CIHR), the Canada Foundation for Innovation, the NIH, and the Fonds de la recherche en santé du Québec (FRSQ), Quebec continues to show great leadership in the life sciences.

Paul L'Archevêque and Martin Godbout, the presidents of Génome Québec and Genome Canada respectively, saluted the vision of the research team and the importance for Quebec and Canada of continuing to invest in genomics research. "The $14 million invested in this project certainly played a role in accelerating the researchers' work, and in helping Montreal to remain competitive on the international scene," noted the agency heads, adding that Dr. Sékaly's team was the first in the world to present the findings of this major study.

"The results of Dr. Sekaly's study represent an important step in the development of a new therapeutic approach in the fight against HIV," said Dr. Alan Bernstein, CIHR President. "This study is a compelling example of the excellence of Canadian health researchers and of Canada's contribution to the world's response to the HIV-AIDS pandemic."

"This important discovery is a powerful example of what can be achieved through partnership," added Dr. Eliot Phillipson, President and CEO of the Canada Foundation for Innovation. "Canada is proud to have researchers of Dr. Sékaly's calibre keeping our country at the forefront of the global fight against HIV-AIDS."

Dr. Mark Wainberg, Co-Director of the FRSQ-AIDS and infectious diseases Network and Co-Chair of the 16th World AIDS Conference held in Toronto last week, congratulated Dr. Sékaly and his team: "This scientific breakthrough is a giant step in the fight against AIDS. It is particularly interesting to see that some of the best research teams are working together to stop this terrible curse."

Sophie Langlois | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>