Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers make a major strategic breakthrough in controling the AIDS virus

24.08.2006
Dr. Rafick-Pierre Sékaly and his team succeed in preventing the HIV virus from making immune system cells dysfunctional

A team of researchers from the Université de Montréal and the Centre hospitalier de l'Université de Montréal (CHUM) have announced an important breakthrough in fighting the human immunodeficiency virus (HIV). For the first time, scientists have identified a defect in the immune response to HIV and found a way to correct the flaw. Dr. Rafick-Pierre Sékaly, an eminent researcher in cell biology, immunology, and virology, has confirmed the identification of a new therapeutic target (the PD-1 protein) that restores the function of the T cells whose role is to eliminate cells infected with the virus. This constitutes a major breakthrough, opening new prospects for the development of therapeutic strategies for controlling HIV infection. The research findings appear in today's issue of the journal Nature Medicine.

Dr. Sékaly explained that "immune system cells made non-functional by HIV can be identified by the presence of a protein that is significantly overexpressed when infected by the virus." In fact, high levels of the protein are associated with a more serious dysfunction. "The most important discovery made in this study arises from the fact that by stimulating this protein, we succeeded in preventing the virus from making immune system cells dysfunctional," he added.

The findings were simultaneously reproduced by two other laboratories – the labs headed by Dr. Bruce Walker at Harvard and Dr. Richard Koup at the NIH. "It's a rare occurrence for three teams to work together on attacking a major problem. Up until now, the virus has been more or less invincible. By combining our efforts, we found the missing link that may enable us to defeat the virus," noted Dr. Sékaly. Discussions with partners are also underway to translate these research findings into clinical trials, which could start during the coming year.

Thanks to the joint efforts of the Université de Montréal, the CHUM Research Centre, Génome Québec, Genome Canada, the Canadian Institutes of Health Research (CIHR), the Canada Foundation for Innovation, the NIH, and the Fonds de la recherche en santé du Québec (FRSQ), Quebec continues to show great leadership in the life sciences.

Paul L'Archevêque and Martin Godbout, the presidents of Génome Québec and Genome Canada respectively, saluted the vision of the research team and the importance for Quebec and Canada of continuing to invest in genomics research. "The $14 million invested in this project certainly played a role in accelerating the researchers' work, and in helping Montreal to remain competitive on the international scene," noted the agency heads, adding that Dr. Sékaly's team was the first in the world to present the findings of this major study.

"The results of Dr. Sekaly's study represent an important step in the development of a new therapeutic approach in the fight against HIV," said Dr. Alan Bernstein, CIHR President. "This study is a compelling example of the excellence of Canadian health researchers and of Canada's contribution to the world's response to the HIV-AIDS pandemic."

"This important discovery is a powerful example of what can be achieved through partnership," added Dr. Eliot Phillipson, President and CEO of the Canada Foundation for Innovation. "Canada is proud to have researchers of Dr. Sékaly's calibre keeping our country at the forefront of the global fight against HIV-AIDS."

Dr. Mark Wainberg, Co-Director of the FRSQ-AIDS and infectious diseases Network and Co-Chair of the 16th World AIDS Conference held in Toronto last week, congratulated Dr. Sékaly and his team: "This scientific breakthrough is a giant step in the fight against AIDS. It is particularly interesting to see that some of the best research teams are working together to stop this terrible curse."

Sophie Langlois | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>