Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers Identify Gatekeeper Involved in Chronic Inflammatory Diseases

The road to many an inflammatory disease is guarded by a cytokine messenger protein called interleukin-27, according to researchers from the University of Pennsylvania School of Veterinary Medicine. Chronic inflammation results when the immune system becomes over stimulated and begins attacking healthy tissue in excess. The Penn researchers found that IL-27 inhibits the immune system cells that are responsible for an array of inflammatory-related diseases, including encephalitis, arthritis, Crohns disease, lupus and even sepsis.

The findings, which appear online at Nature Immunology, determine that IL-27 may be a useful target for treating a number of such autoimmune diseases. Restoring or augmenting the abilities of IL-27 may be enough to halt inflammation.

"There are many immune-mediated diseases with many different causes, but the type of cells that IL-27 inhibits are a major part of the pathway of cellular signals that lead to inflammation," said Christopher Hunter, professor in Penn Vet's Department of Pathobiology. "Our findings indicate that IL-27 is a prominent factor that helps keep the immune system under control."

In previous studies, the researchers found that the IL-27 cytokine limits the duration and intensity of white blood activation, an "off switch" to the cascade of messenger proteins that serve to further activate the immune system. Prior to their research, the general assumption among scientists was that IL-27 promoted inflammation.

To understand the role of IL-27 in chronic inflammation, Hunter and his colleagues at the Ludwig Institute for Cancer Research in Melbourne, Amgen and the NIH studied mice engineered to lack the receptor that enables IL-27 to function in normal mice. When infected with the parasite Toxoplasma gondii, which causes toxoplasmosis, the mice developed severe brain inflammation that was caused by helper T cells, a type of white blood cell that activates and directs portions of the immune system. Without the ability of IL-27 to regulate the immune system, however, the response to the infection in the brain goes out of control.

Hunter and his colleagues determined that IL-27 targets a novel subset of helper T cells, called helper T-17 cells, which previous studies from the DNAX research group in California have implicated in autoimmune disease. In healthy immune systems, inflammation is an important part of the response to infection. According to Jason Stumhofer, a post-doctoral researcher at Penn Vet and lead author of this study, the experiment illustrates a common disease scenario in which a normal functioning part of the immune system continues to perform its task without regulation.

Without IL-27, other brakes in the system are not sufficient to keep inflammation in check, Stumhofer said. The more we understand the role of cytokines in the immune system, the more we realize that they are part of an elaborately balanced system kept in check by the conflicting regulatory functions of the cytokines themselves.

The findings open up the possibility that strategies that augment the effectiveness of IL-27 can be used therapeutically in these tissue specific pathologies. Perhaps the best route might be through using p28, a small active portion of the IL-27 molecule discovered by the researchers.

"It may be possible to use IL-27 or its active subunit in such a way that we can temper the immune system without suppressing the beneficial immune reactions," Hunter said.

Funding for this research was provided by the National Institutes of Health.

Greg Lester | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>