Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIAI scientists identify immune system trigger for fighting Lyme disease

23.08.2006
Research could lead to new vaccines against Lyme disease and other bacterial infections

Researchers at the La Jolla Institute for Allergy & Immunology (LIAI) today announced an important finding on Lyme disease that could eventually lead to the development of a new vaccine to prevent this tick-borne disorder. Lyme disease is transmitted to humans by the bite of infected ticks. Typical symptoms include fever, headache, fatigue, and sometimes skin rashes. If left untreated, it can spread to the joints, the heart and the nervous system and can lead to serious health problems.

LIAI scientist Mitchell Kronenberg, Ph.D., and an international team of scientists, have identified that Borrelia burgdorferi, the bacteria that causes Lyme disease, contains a glycolipid which triggers an immune response from the body's natural killer (NK) T cells, a type of white blood cell. The finding is particularly exciting because it is one of the few glycolipids found to naturally induce an immune response from the body's NK T cells, which are prized for their ability to initiate a fast and vigorous attack against infection. Scientists are hopeful that this glycolipid can be used to create a vaccine against Lyme disease.

The finding was published today in the online version of the scientific journal Nature Immunology in a paper entitled, "Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria."

This was the second major finding on NK T cells published in the last year by Kronenberg and his team. In a June 2005 scientific paper in Nature, Kronenberg and colleagues identified a bacteria, Sphingomonas, as containing a glycolipid which also triggers an NK T cell response. Now that a total of three substances have been found to naturally activate the NK T cells, "it opens up the idea that we should be looking at many different types of bacteria that may be able to activate these cells," Kronenberg said.

Most white blood cells respond to foreign proteins to protect the body, but NK T cells are unique in that they respond to glycolipids, which are natural biochemicals made of linked fat and sugar. Prior to Kronenberg's findings, only one compound, developed by the Kirin Pharmaceutical Research company in the1990s, was known to activate the NK T cells. In a surprising twist, that compound was initially discovered in marine sponges. The compound was found to have anti-tumor activity and is currently in clinical trials for several tumor types. Because the NK T cells are known to be responsible for the tumor fighting mechanism induced by the marine sponge compound, and because their mechanism of action has been so mysterious, the NK T cells have generated increased research interest over the last several years.

In particular, scientists wanted to know what substance would naturally activate the NK T cells. "Although the synthetic compound was useful for many studies, we wanted to know what substance would normally cause the NK T cells to produce an immune response, and it was not believable that marine sponges normally stimulate our immune system," said Kronenberg, who is also LIAI's President and Scientific Director.

After identifying the Sphingomonas bacteria last year as an NK T cell activator, Kronenberg strongly suspected that other bacteria might also activate these cells, which led to the discovery of the Borrelia burgdorferi antigen. He believes many other types of bacteria may also produce an immune response from NK T cells. "This is an exciting possibility that needs to be further explored as it could lead to the development of vaccines or treatments for many bacteria caused diseases," he said.

Scientists from the Scripps Research Institute, Rockefeller University, the National Institutes of Health, Albany Medical College, Harvard Medical School, and Industrial Research Ltd of New Zealand also participated in the study.

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>