Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI scans in premature infants can predict future developmental delays

21.08.2006
A Washington University pediatrician at St. Louis Children's Hospital has found that performing MRI scans on pre-term infants' brains assists dramatically in predicting the babies' future developmental outcomes.

Terrie E. Inder, M.D., associate professor of pediatrics, of radiology and of neurology at Washington University School of Medicine in St. Louis, and pediatric researchers in New Zealand and Australia found that the magnetic resonance imaging (MRI) scans were able to determine abnormalities in the white matter and gray matter of the brains of very pre-term infants, those born at 30 weeks or less. Following the infants from birth to age 2, the researchers were able to grade those abnormalities to predict the risk of severe cognitive delays, psychomotor delays, cerebral palsy, or hearing or visual impairments that may be visible by age 2.

The results of the study appear in the Aug. 17 issue of the New England Journal of Medicine. The researchers studied 167 preterm infants in New Zealand and Australia and at St. Louis Children's Hospital. Inder said the findings are a breakthrough because previous technology -- cranial ultrasounds -- did not show the abnormalities in the infants' brains.

"With the MRI, now we can understand what's going wrong in the developing brain when the baby is born early," Inder said. "We can use the MRI when the baby reaches full-term (40 weeks) to predict neurodevelopmental outcomes." More than 2 percent of all live births are infants born before 32 weeks of gestation. Nationwide, the rate of premature births jumped 13 percent between 1992 and 2002, according to the March of Dimes. Recent data show that 50 percent of children born prematurely suffer some neurodevelopmental challenges, such as crawling, walking upright, running, swinging arms, and other activities that require coordination and balance. Among pre-term infants who survive, 5 percent to 15 percent have cerebral palsy, severe vision or hearing impairment or both, and 25 percent to 50 percent have cognitive, behavioral and social difficulties that require special educational resources.

The MRI scans show lesions on the infants' brains, as well as which region of the brain is affected and the severity of the risk for future developmental delays. For example, if a lesion is in the area of the brain that controls fine and gross motor skills, the risk is higher that the child will have some type of developmental delay in movement. Pediatricians would then know that the child would benefit from immediate physical therapy, Inder said.

"We can use these results to determine which baby would benefit most from physical, occupational or speech therapy," Inder said. "We can also help prepare the parents for future challenges with learning delays and developmental disabilities."

Beth Miller | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>