Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI scans in premature infants can predict future developmental delays

21.08.2006
A Washington University pediatrician at St. Louis Children's Hospital has found that performing MRI scans on pre-term infants' brains assists dramatically in predicting the babies' future developmental outcomes.

Terrie E. Inder, M.D., associate professor of pediatrics, of radiology and of neurology at Washington University School of Medicine in St. Louis, and pediatric researchers in New Zealand and Australia found that the magnetic resonance imaging (MRI) scans were able to determine abnormalities in the white matter and gray matter of the brains of very pre-term infants, those born at 30 weeks or less. Following the infants from birth to age 2, the researchers were able to grade those abnormalities to predict the risk of severe cognitive delays, psychomotor delays, cerebral palsy, or hearing or visual impairments that may be visible by age 2.

The results of the study appear in the Aug. 17 issue of the New England Journal of Medicine. The researchers studied 167 preterm infants in New Zealand and Australia and at St. Louis Children's Hospital. Inder said the findings are a breakthrough because previous technology -- cranial ultrasounds -- did not show the abnormalities in the infants' brains.

"With the MRI, now we can understand what's going wrong in the developing brain when the baby is born early," Inder said. "We can use the MRI when the baby reaches full-term (40 weeks) to predict neurodevelopmental outcomes." More than 2 percent of all live births are infants born before 32 weeks of gestation. Nationwide, the rate of premature births jumped 13 percent between 1992 and 2002, according to the March of Dimes. Recent data show that 50 percent of children born prematurely suffer some neurodevelopmental challenges, such as crawling, walking upright, running, swinging arms, and other activities that require coordination and balance. Among pre-term infants who survive, 5 percent to 15 percent have cerebral palsy, severe vision or hearing impairment or both, and 25 percent to 50 percent have cognitive, behavioral and social difficulties that require special educational resources.

The MRI scans show lesions on the infants' brains, as well as which region of the brain is affected and the severity of the risk for future developmental delays. For example, if a lesion is in the area of the brain that controls fine and gross motor skills, the risk is higher that the child will have some type of developmental delay in movement. Pediatricians would then know that the child would benefit from immediate physical therapy, Inder said.

"We can use these results to determine which baby would benefit most from physical, occupational or speech therapy," Inder said. "We can also help prepare the parents for future challenges with learning delays and developmental disabilities."

Beth Miller | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>