Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MRI scans in premature infants can predict future developmental delays

21.08.2006
A Washington University pediatrician at St. Louis Children's Hospital has found that performing MRI scans on pre-term infants' brains assists dramatically in predicting the babies' future developmental outcomes.

Terrie E. Inder, M.D., associate professor of pediatrics, of radiology and of neurology at Washington University School of Medicine in St. Louis, and pediatric researchers in New Zealand and Australia found that the magnetic resonance imaging (MRI) scans were able to determine abnormalities in the white matter and gray matter of the brains of very pre-term infants, those born at 30 weeks or less. Following the infants from birth to age 2, the researchers were able to grade those abnormalities to predict the risk of severe cognitive delays, psychomotor delays, cerebral palsy, or hearing or visual impairments that may be visible by age 2.

The results of the study appear in the Aug. 17 issue of the New England Journal of Medicine. The researchers studied 167 preterm infants in New Zealand and Australia and at St. Louis Children's Hospital. Inder said the findings are a breakthrough because previous technology -- cranial ultrasounds -- did not show the abnormalities in the infants' brains.

"With the MRI, now we can understand what's going wrong in the developing brain when the baby is born early," Inder said. "We can use the MRI when the baby reaches full-term (40 weeks) to predict neurodevelopmental outcomes." More than 2 percent of all live births are infants born before 32 weeks of gestation. Nationwide, the rate of premature births jumped 13 percent between 1992 and 2002, according to the March of Dimes. Recent data show that 50 percent of children born prematurely suffer some neurodevelopmental challenges, such as crawling, walking upright, running, swinging arms, and other activities that require coordination and balance. Among pre-term infants who survive, 5 percent to 15 percent have cerebral palsy, severe vision or hearing impairment or both, and 25 percent to 50 percent have cognitive, behavioral and social difficulties that require special educational resources.

The MRI scans show lesions on the infants' brains, as well as which region of the brain is affected and the severity of the risk for future developmental delays. For example, if a lesion is in the area of the brain that controls fine and gross motor skills, the risk is higher that the child will have some type of developmental delay in movement. Pediatricians would then know that the child would benefit from immediate physical therapy, Inder said.

"We can use these results to determine which baby would benefit most from physical, occupational or speech therapy," Inder said. "We can also help prepare the parents for future challenges with learning delays and developmental disabilities."

Beth Miller | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>