Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rush Researchers Explore Use of Nanotechnology as Diagnostic and Screening Tool for Women’s Health

16.08.2006
Early Detection of Ovarian Cancer is a Goal

Nanotechnology is revolutionizing the way things are constructed -- from stain resistant clothing to stronger, yet lighter tennis rackets. However, the biggest impact of nanotechnology in the future is expected to be in the healthcare industry.

At Rush University Medical Center, researchers believe nanotechnology can lead to strikingly new ways to diagnosis and treat ovarian cancer. In a unique collaboration with Argonne National Laboratory and the Illinois Institute of Technology, Rush researchers are employing state-of-the-art nanotechnology to improve the health of women.

“While the mortality rates of many cancers have decreased significantly in recent decades, the rate for ovarian cancer had not changed much in the last 50 years, primarily due to delays in diagnosis,” said Dr. Jacob Rotmensch, section director of gynecologic oncology at Rush. “By exploiting the unique properties of nanotechnology, we hope to detect ovarian cancer earlier using highly sensitive imaging tools and develop drug carriers that can deliver therapeutic agents inside tumor cells.”

“A nanotechnology based approach is needed because diagnosis of early stage cancer requires the detection and characterization of very small quantities of biomarker” added Dr. Liaohai Chen, a molecular biologist and leader of the nano-bio group in the Biosciences Division at Argonne, and an adjunct faculty at Rush University Medical Center.

A nanometer is one billionth of a meter or 1/80,000 the width of a human hair. Nanoscale devices can perform tasks inside the body that would otherwise not be possible, such as entering most cells and moving through the walls of blood vessels. As a result, nanoscale devices can readily interact with individual molecules on both the cell surface and within the cell, in ways that do not alter the behavior of those molecules.

One area of research involves developing a screening test that would not require removal of the ovary for biopsy. Collaborating with Dr. Rong Wang, an associate professor at Illinois Institute of Technology, the research team is using an atomic force microscope, a very-high resolution microscope that can investigate the interaction of individual protein molecules. With this microscope the research team can study the molecular structure of cancer versus non-cancer cells and compare the stiffness. Cancer tissues are more stiff than healthy tissues. Instead of removing the ovary to determine if cancerous tissue is present, a probe is currently under development to follow the tissue stiffness in vivo to diagnose cancer.

A second area of research involving nanotechnology uses viral particles as templates to fabricate uniform, nanometer imaging probes and drug carriers. The research team is extracting the DNA from viral particles and replacing it with imaging agents. The goal is to have the viral capsule adhere to a cancer cell and inject the imaging or a therapeutic agent into the cell. This technology could lead to early diagnosis and the development of targeted drug therapy that kills cancer cells while leaving the rest of the body unharmed.

“The development of a smart probe and carrier complex will provide significant advantage to the clinicians as they can locate the tumor, monitor the drug delivery vehicle and control drug release using imaging techniques,” said Chen.

Another avenue of nanotechnology research at Rush is to develop nanometer sized contrast agents with ultrasound to diagnose ovarian cancer. Such nano ultrasonographic contrast media can pass through the smallest capillaries. These tiny bubbles light up on ultrasound and may be able to show the earliest vascular changes associated with ovarian malignancy. If this is successful, further research will be conducted to study targeted imaging as well as targeted therapy.

Ovarian cancer is the fifth-most common cancer among American women and claims the lives of more North American women each year than all other gynecologic malignancies combined. About 75 percent of patients are not diagnosed until the disease is in its later stages, and current therapies are not effective enough to successfully treat the disease in such advanced stages.

“There has been a great amount of progress made in the field of nanotechnology over the last five years, but it has not yet been applied to women’s health,” said Rotmensch. “We believe this ‘small-particle’ technology has the capability to quickly and sensitively detect cancer molecules earlier than ever before. This research opens new avenues that will directly impact patient care, such as drug development, diagnostic imaging and ultimately, prevention.”

These nanotechnology research projects are collaboration among Rush University Medical Center, Argonne National Laboratory, and the Illinois Institute of Technology under the directorships of Dr. Jacob Rotmensch and Dr. Liaohai Chen. The collaboration promotes the education, dialogue, and interaction of physicians and biologists with chemists, physicists and engineers to foster the research of applying nanotechnology to gyn-oncology and regenerative medicine. One goal of the research is to develop novel medical imaging and a drug delivery vehicle that will drive state-of-the-art screening, treatment and prevention of women’s disease to a new level.

Kim Waterman | EurekAlert!
Further information:
http://www.rush.edu

More articles from Health and Medicine:

nachricht Malaria Already Endemic in the Mediterranean by the Roman Period
27.07.2017 | Universität Zürich

nachricht Serious children’s infections also spreading in Switzerland
26.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>