Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rush Researchers Explore Use of Nanotechnology as Diagnostic and Screening Tool for Women’s Health

16.08.2006
Early Detection of Ovarian Cancer is a Goal

Nanotechnology is revolutionizing the way things are constructed -- from stain resistant clothing to stronger, yet lighter tennis rackets. However, the biggest impact of nanotechnology in the future is expected to be in the healthcare industry.

At Rush University Medical Center, researchers believe nanotechnology can lead to strikingly new ways to diagnosis and treat ovarian cancer. In a unique collaboration with Argonne National Laboratory and the Illinois Institute of Technology, Rush researchers are employing state-of-the-art nanotechnology to improve the health of women.

“While the mortality rates of many cancers have decreased significantly in recent decades, the rate for ovarian cancer had not changed much in the last 50 years, primarily due to delays in diagnosis,” said Dr. Jacob Rotmensch, section director of gynecologic oncology at Rush. “By exploiting the unique properties of nanotechnology, we hope to detect ovarian cancer earlier using highly sensitive imaging tools and develop drug carriers that can deliver therapeutic agents inside tumor cells.”

“A nanotechnology based approach is needed because diagnosis of early stage cancer requires the detection and characterization of very small quantities of biomarker” added Dr. Liaohai Chen, a molecular biologist and leader of the nano-bio group in the Biosciences Division at Argonne, and an adjunct faculty at Rush University Medical Center.

A nanometer is one billionth of a meter or 1/80,000 the width of a human hair. Nanoscale devices can perform tasks inside the body that would otherwise not be possible, such as entering most cells and moving through the walls of blood vessels. As a result, nanoscale devices can readily interact with individual molecules on both the cell surface and within the cell, in ways that do not alter the behavior of those molecules.

One area of research involves developing a screening test that would not require removal of the ovary for biopsy. Collaborating with Dr. Rong Wang, an associate professor at Illinois Institute of Technology, the research team is using an atomic force microscope, a very-high resolution microscope that can investigate the interaction of individual protein molecules. With this microscope the research team can study the molecular structure of cancer versus non-cancer cells and compare the stiffness. Cancer tissues are more stiff than healthy tissues. Instead of removing the ovary to determine if cancerous tissue is present, a probe is currently under development to follow the tissue stiffness in vivo to diagnose cancer.

A second area of research involving nanotechnology uses viral particles as templates to fabricate uniform, nanometer imaging probes and drug carriers. The research team is extracting the DNA from viral particles and replacing it with imaging agents. The goal is to have the viral capsule adhere to a cancer cell and inject the imaging or a therapeutic agent into the cell. This technology could lead to early diagnosis and the development of targeted drug therapy that kills cancer cells while leaving the rest of the body unharmed.

“The development of a smart probe and carrier complex will provide significant advantage to the clinicians as they can locate the tumor, monitor the drug delivery vehicle and control drug release using imaging techniques,” said Chen.

Another avenue of nanotechnology research at Rush is to develop nanometer sized contrast agents with ultrasound to diagnose ovarian cancer. Such nano ultrasonographic contrast media can pass through the smallest capillaries. These tiny bubbles light up on ultrasound and may be able to show the earliest vascular changes associated with ovarian malignancy. If this is successful, further research will be conducted to study targeted imaging as well as targeted therapy.

Ovarian cancer is the fifth-most common cancer among American women and claims the lives of more North American women each year than all other gynecologic malignancies combined. About 75 percent of patients are not diagnosed until the disease is in its later stages, and current therapies are not effective enough to successfully treat the disease in such advanced stages.

“There has been a great amount of progress made in the field of nanotechnology over the last five years, but it has not yet been applied to women’s health,” said Rotmensch. “We believe this ‘small-particle’ technology has the capability to quickly and sensitively detect cancer molecules earlier than ever before. This research opens new avenues that will directly impact patient care, such as drug development, diagnostic imaging and ultimately, prevention.”

These nanotechnology research projects are collaboration among Rush University Medical Center, Argonne National Laboratory, and the Illinois Institute of Technology under the directorships of Dr. Jacob Rotmensch and Dr. Liaohai Chen. The collaboration promotes the education, dialogue, and interaction of physicians and biologists with chemists, physicists and engineers to foster the research of applying nanotechnology to gyn-oncology and regenerative medicine. One goal of the research is to develop novel medical imaging and a drug delivery vehicle that will drive state-of-the-art screening, treatment and prevention of women’s disease to a new level.

Kim Waterman | EurekAlert!
Further information:
http://www.rush.edu

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>