Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rush Researchers Explore Use of Nanotechnology as Diagnostic and Screening Tool for Women’s Health

16.08.2006
Early Detection of Ovarian Cancer is a Goal

Nanotechnology is revolutionizing the way things are constructed -- from stain resistant clothing to stronger, yet lighter tennis rackets. However, the biggest impact of nanotechnology in the future is expected to be in the healthcare industry.

At Rush University Medical Center, researchers believe nanotechnology can lead to strikingly new ways to diagnosis and treat ovarian cancer. In a unique collaboration with Argonne National Laboratory and the Illinois Institute of Technology, Rush researchers are employing state-of-the-art nanotechnology to improve the health of women.

“While the mortality rates of many cancers have decreased significantly in recent decades, the rate for ovarian cancer had not changed much in the last 50 years, primarily due to delays in diagnosis,” said Dr. Jacob Rotmensch, section director of gynecologic oncology at Rush. “By exploiting the unique properties of nanotechnology, we hope to detect ovarian cancer earlier using highly sensitive imaging tools and develop drug carriers that can deliver therapeutic agents inside tumor cells.”

“A nanotechnology based approach is needed because diagnosis of early stage cancer requires the detection and characterization of very small quantities of biomarker” added Dr. Liaohai Chen, a molecular biologist and leader of the nano-bio group in the Biosciences Division at Argonne, and an adjunct faculty at Rush University Medical Center.

A nanometer is one billionth of a meter or 1/80,000 the width of a human hair. Nanoscale devices can perform tasks inside the body that would otherwise not be possible, such as entering most cells and moving through the walls of blood vessels. As a result, nanoscale devices can readily interact with individual molecules on both the cell surface and within the cell, in ways that do not alter the behavior of those molecules.

One area of research involves developing a screening test that would not require removal of the ovary for biopsy. Collaborating with Dr. Rong Wang, an associate professor at Illinois Institute of Technology, the research team is using an atomic force microscope, a very-high resolution microscope that can investigate the interaction of individual protein molecules. With this microscope the research team can study the molecular structure of cancer versus non-cancer cells and compare the stiffness. Cancer tissues are more stiff than healthy tissues. Instead of removing the ovary to determine if cancerous tissue is present, a probe is currently under development to follow the tissue stiffness in vivo to diagnose cancer.

A second area of research involving nanotechnology uses viral particles as templates to fabricate uniform, nanometer imaging probes and drug carriers. The research team is extracting the DNA from viral particles and replacing it with imaging agents. The goal is to have the viral capsule adhere to a cancer cell and inject the imaging or a therapeutic agent into the cell. This technology could lead to early diagnosis and the development of targeted drug therapy that kills cancer cells while leaving the rest of the body unharmed.

“The development of a smart probe and carrier complex will provide significant advantage to the clinicians as they can locate the tumor, monitor the drug delivery vehicle and control drug release using imaging techniques,” said Chen.

Another avenue of nanotechnology research at Rush is to develop nanometer sized contrast agents with ultrasound to diagnose ovarian cancer. Such nano ultrasonographic contrast media can pass through the smallest capillaries. These tiny bubbles light up on ultrasound and may be able to show the earliest vascular changes associated with ovarian malignancy. If this is successful, further research will be conducted to study targeted imaging as well as targeted therapy.

Ovarian cancer is the fifth-most common cancer among American women and claims the lives of more North American women each year than all other gynecologic malignancies combined. About 75 percent of patients are not diagnosed until the disease is in its later stages, and current therapies are not effective enough to successfully treat the disease in such advanced stages.

“There has been a great amount of progress made in the field of nanotechnology over the last five years, but it has not yet been applied to women’s health,” said Rotmensch. “We believe this ‘small-particle’ technology has the capability to quickly and sensitively detect cancer molecules earlier than ever before. This research opens new avenues that will directly impact patient care, such as drug development, diagnostic imaging and ultimately, prevention.”

These nanotechnology research projects are collaboration among Rush University Medical Center, Argonne National Laboratory, and the Illinois Institute of Technology under the directorships of Dr. Jacob Rotmensch and Dr. Liaohai Chen. The collaboration promotes the education, dialogue, and interaction of physicians and biologists with chemists, physicists and engineers to foster the research of applying nanotechnology to gyn-oncology and regenerative medicine. One goal of the research is to develop novel medical imaging and a drug delivery vehicle that will drive state-of-the-art screening, treatment and prevention of women’s disease to a new level.

Kim Waterman | EurekAlert!
Further information:
http://www.rush.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>