Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reins and Spurs for the Immune System

16.08.2006
How Disruptions of T Cell Balance Induce Severe Intestinal Inflammation
A finely tuned equilibrium between aggressive and inhibitive immune cells ensures that the intestinal mucosa remains healthy and functional.

Scientists at the Helmholtz Centre for Infection Research in Braunschweig, however, have studied on mice what happens when the normal interaction between these cells is disrupted: severe intestinal inflammation, whose symptoms closely resemble human autoimmune diseases, such as Morbus Crohn or Colitis ulcerosa.

"The intestinal surfaces form a border between the insides of the human body and the outside world, and they present our immune system with a monumental task," explains Dr. Astrid Westendorf, a researcher at the Helmholtz center. "Bacteria and other disease-causing pathogens that attempt to penetrate the body must be vehemently repelled at this point," she says. "On the other hand, nutrients, as well as the body's own cells and molecules, must not induce an immune reaction. Otherwise, a severe inflammation could result which might, in the long term, cause serious damage, and in some cases, even destroy the intestinal mucosa."

Dramatic Symptoms

This is exactly what happens with so-called Villin HA-mice, which were studied by Westendorf and her colleagues. "These animals belong to a genetically altered strain that possess a molecule known as hemagglutinin, or HA, on the cells of their intestinal mucosa," she says. Westendorf injected these animals with immune cells from the blood of other mice strains that specifically produced immune cells targeting HA. The result: the immune cells attacked the intestinal surface and induced dramatic symptoms similar to those of patients with chronic intestinal inflammation.

A Surprising Tolerance

When these two strains of mice are cross-bred, however, they produce something astonishing: "The progeny have both the HA on the intestinal surface as well as the special immune cells against HA in their blood, and yet, they remain healthy," notes Westendorf. The reason for this phenomenon, known as "immune tolerance", is probably the so-called regulatory T cells, or TREG , which are specific inhibitors of the immune system that shut down other defense cells before they go too far with their attacks and cause harm to the body. "These TREG must have developed in the animals in the course of their lives," says Dr.

Westendorf. They keep the defense cells in check, most of which are the CD4+ or CD8+ type T cells, since these would otherwise attack the always present components of their own intestinal surface.

Complex Interaction

"The constant interaction between aggressive T cells and inhibiting TREG keeps the immunological balance of our intestinal mucosa intact," explains Prof. Dr. Jan Buer, work group leader at the Helmholtz Centre for Infection Research. "Many chronic, inflammatory intestinal ailments occur because this balance no longer functions," he says. Buer hopes that a better understanding of the processes involved could open up opportunities to selectively turn immune system responses up or down. "That," he says, "could lead to possible therapies for autoimmune diseases, like Morbus Crohn, but also tumors and infections in which the immune reaction needs to be selectively activated."

Manfred Braun | alfa
Further information:
http://www.gbf.de

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>