Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clinical trial evaluates first-line approaches for treating HIV

15.08.2006
Results of first trial to compare two standard therapies and 'nuke'-sparing approach presented at AIDS 2006

In the first head-to-head comparison between two commonly used HIV treatments, researchers found one triple-drug therapy was significantly more effective at reducing HIV viral load in the blood when used as a first-line treatment.

Results of the clinical trial, which sought to determine from among three different therapies the optimal approach for patients beginning HIV treatment for the first time, will be reported at the XVI International AIDS Conference (AIDS 2006).

Of the two triple-drug approaches evaluated in the randomized trial, the therapy consisting of two nucleoside reverse transcriptase inhibitors (NRTIs) with efavirenz, a non-nucleoside reverse transcriptase inhibitor (NNRTI), suppressed the virus to undetectable levels in more participants than the three-drug combination of two NRTIs and a protease inhibitor called lopinavir/ritonavir. Moreover, a third regimen, efavirenz and lopinavir/ritonavir, performed nearly as well as the three-drug cocktail with efavirenz, suggesting initial therapy need not include NRTIs, a class of drugs that can produce intolerable side effects in some patients.

"Our findings suggest that the efavirenz plus two-NRTI regimen was the best of the three approaches as initial therapy, even in patients with relatively advanced HIV disease," said Sharon Riddler, M.D., M.P.H., assistant professor of medicine in the division of infectious diseases at the University of Pittsburgh School of Medicine, who will present the findings at AIDS 2006.

"Also, we found that the NRTI-sparing two-drug combination of efavirenz and lopinavir had a similar level of effectiveness to the efavirenz plus two-NRTI regimen. When we started this study, we heard from physicians with concerns about using efavirenz in the absence of NRTIs. Now that we've completed the trial, there should be little doubt that patients can benefit from this 'nuke'-sparing treatment regimen when NRTI side effects are a problem," she added.

The NRTI-sparing combination of lopinavir/ritonavir and efavirenz had never before been studied as first-line therapy in a large randomized clinical trial, in part because a general belief that combining an NNRTI with a protease inhibitor could result in resistance to two important classes of drugs. But earlier studies with other drug combinations suggested the approach would be safe. Thus, in designing the trial, Dr. Riddler and her national co-chair, Richard Haubrich, M.D., at the University of California, San Diego (UCSD) School of Medicine, felt it important to include this less conventional regimen so it could be evaluated under the rigors of a clinical trial.

The study included 753 participants at 55 centers and was conducted under the auspices of the AIDS Clinical Trials Group (ACTG), considered the world's largest HIV clinical trials organization. ACTG receives its funding from the National Institute of Allergy and Infectious Diseases.

At the start of the study, just more than half of the participants had viral loads greater than 100,000 copies of HIV RNA per milliliter of blood. The median CD4+ T cell count was just 182 cells per cubic milliliter. Each participant was randomly assigned to one of the three treatment arms: 250 were selected to receive the efavirenz-based triple drug therapy, 253 the lopinavir/ritonavir-based triple drug therapy, and 250 were assigned to the group receiving the NRTI-sparing regimen of efavirenz and lopinavir/ritonavir. Participants in the triple-drug therapy groups each received two NRTIs: lamivudine, plus their choice of stavudine, zidovudine or tenofovir disoproxil fumarate.

The researchers found all three of the treatment regimens were potent, producing substantial increases in CD4+ T cell counts and decreases in HIV viral load. After 96 weeks of treatment, 89 percent of the participants randomized to the efavirenz arm had "undetectable" levels of HIV, meaning viral load was less than 50 copies per milliliter; 77 percent of the lopinavir/ritonavir arm participants and 83 percent of the participants on the NRTI-sparing regimen had low viral loads. Interestingly, the CD4+ T cell count increase was greater in the two study arms containing lopinavir/ritonavir as compared to the efavirenz regimen. At week 96, the CD4+ T cells increased from baseline to 285 cells in the lopinavir/ritonavir group, 268 cells in the nucleoside-sparing group and 241 cells for the efavirenz regimen.

More participants in the lopinavir/ritonavir group experienced virologic failure – a rebound in the HIV virus load to detectable levels – during the study compared to the efavirenz group. After 96 weeks of treatment, 33 percent of participants in the lopinavir/ritonavir group had virologic failure compared to 24 percent of the participants receiving the efavirenz-based therapy and 27 percent of those in the NRTI-sparing group.

It was no mistake that the two particular triple-drug therapies were selected for the study. Both are listed as "preferred" options in the U.S. Department of Health and Human Service's treatment guidelines for HIV infection.

"We were surprised that the lopinavir plus two-NRTI regimen did not perform as well as the efavirenz-based treatment because lopinavir/ritonavir is considered one of the most potent drugs that we have available for HIV treatment at this time. It may be that the lopinavir/ritonavir regimen, which was dosed twice daily using the soft gel capsule form, was less convenient or less well tolerated by patients. We will continue to evaluate our study data to try to assess the reasons for these findings," noted Dr. Haubrich, professor of medicine in the division of infectious diseases at UCSD School of Medicine.

All of the drugs used in the clinical trial are approved for the treatment of HIV. Nucleoside reverse transcriptase inhibitors, or NRTIs, prevent healthy T cells from being infected by blocking a process called reverse transcription that HIV uses to convert its RNA into DNA. By inserting faulty building blocks, HIV can't copy its DNA. NNRTIs, the non-nucleoside reverse transcriptase inhibitors, target the same mechanism but block the reverse transcriptase enzyme by attaching to a different site than NRTIs. The class of drugs known as protease inhibitors blocks the maturation of proteins that HIV needs to assemble itself into an infectious virus.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>