Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fighting septic shock

14.08.2006
A potential new treatment for septic shock and other inflammatory diseases has been discovered by Monash Institute researchers.

There are 18 million cases of septic shock each year, causing 500,000 deaths. But there is no effective treatment to this overloading of the body’s immune response.

“Our treatment in mice demonstrated a beneficial effect and has been patented. Now we need a commercial partner to further develop the concept,” says Kristian Jones, a post-doctoral fellow at the Monash Institute of Medical Research in Melbourne, Australia and one of this year's Fresh Scientists.

Kristian is one of sixteen young researchers selected from across Australia in the national competition Fresh Science. One of the Fresh Scientists will win a study tour to the UK courtesy of the British Council and have the opportunity to present their work at the Royal Institution.

“Interestingly, Monash researchers including David de Kretser AC (now Governor of Victoria), discovered follistatin in 1990. But it was thought that it was just a reproductive protein.”

“We’ve now discovered that follistatin also plays an important role in controlling inflammation,” says Jones.

Septic shock is caused by the spread of an infection to the whole body forcing the body’s normal inflammatory response to go into overdrive.

"A few years ago we found that another protein, activin, is produced by the body in response to inflammation," says Jones. "It is thought to help stimulate inflammation. In mice we found that follistatin was also being released and was binding to activin and neutralising it. When we gave the mice more follistatin it increased their chance of surviving sepsis."

"We believe that the follistatin moderated the activin and dampened the inflammatory response," says Jones.

Septic shock is the leading cause of mortality after heart disease in intensive care units, costing billions of dollars in healthcare costs every year. These findings raise hopes of using follistatin to save lives.

The human body is under a persistent threat from infections but it has adapted to deal with this threat. Normally the body uses its defence or immune system together with inflammation to control infection.

Sometimes an infection escapes the defence system and quickly spreads to a number of organs and the blood stream resulting in septic shock. This is now a very serious infection and the body needs to react strongly to control it. Sometimes the body quickly over-reacts, throwing its all at the infection, and damaging itself.

It is this uncontrolled inflammatory response in septic shock that can lead to vital organs being damaged and in many cases death.

"As well as looking for commercial partners, we are further exploring how follistatin interacts with activin," says Jones. "We’ve already found that patients with sepsis also have high levels of activin and follistatin. If follistatin’s role in managing inflammation is confirmed, it could assist with rheumatoid arthritis, asthma and other inflammatory diseases."

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com/sciencenow/2006/kristian.htm

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>