Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

True colors are in the brain of the beholder

10.08.2006
Pictures of brain waves that reveal our ability to see colour could provide a new objective way to diagnose and monitor diseases that affect human colour perception.

The research finding by a Universiy of New South Wales PhD student, Ms Mei Ying Boon, has earned her a nomination in this year's Fresh Science Awards.

"Eye diseases such as glaucoma can alter people's ability to accurately see colour," says Ms Boon. "Therefore, studying brain activity could be a useful way to diagnose and monitor diseases and conditions that affect colour vision pathways in the brain."

Ms Boon and her UNSW colleagues measured the brain waves of 22 adult volunteers while the volunteers viewed computer patterns composed of two different shades. The two colours ranged from very different (red and green) to very similar. If the viewer couldn't distinguish the colours, then the pattern was invisible to them.

When the volunteers could see the pattern, their brain waves included a distinctively patterned wave. The researchers measured this signal three different ways and found it could be used to reveal the finest colour discriminations that individuals can make. The result: a potential visual health test.

"People's natural ability to make fine distinctions between colours varies in the population," says Ms Boon who published her findings in Vision Science with her UNSW co-authors, Dr Catherine Suttle and Associate Professor Bruce Henry.

"For example, we've all met people who are unaware that they mix up colours, or wear colours that clash. For most of us, this isn't a big deal but for those with poor colour discrimination it can make apparently simple tasks difficult. For example, our ability to see colours affects our ability to carry out daily tasks such as food preparation (which is the ripe tomato?) and interpret signals like traffic lights," says Ms Boon.

"More seriously, poor colour vision can be a serious impediment to safety when working in some occupations, such as fire-fighting and electrical wiring. The ability to test objectively people's natural perception of fine colour discrimination could provide them with valuable information about their natural ability," says Ms Boon.

Dan Gaffney | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Health and Medicine:

nachricht Research offers clues for improved influenza vaccine design
09.04.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Injecting gene cocktail into mouse pancreas leads to humanlike tumors
06.04.2018 | University of Texas Health Science Center at San Antonio

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>