Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Finding paves way for better treatment of autoimmune disease

10.08.2006
A signaling molecule with an affinity for alcohol has yielded a rapid, inexpensive way to make large numbers of immune cells that work like beat cops to keep misguided cells from attacking the body.

The ability to easily make large numbers of these cells opens the door to improved treatment and a better understanding of autoimmune diseases such as type1 diabetes and arthritis, Medical College of Georgia researchers say.

T cells are components of the immune system designed to attack invaders such as bacteria and viruses; regulatory T cells are a small subset that prevents the cells from also attacking body tissue.

Research published in the August issue of Nature Methods shows that, given the option, phospholipase D, which typically mixes with water, prefers alcohol. It’s an apparently lethal choice for the signaling molecule that, in turn, also kills T cells that need phospholipase D to survive. Previously, it was unknown whether regulatory T cells required the molecule.

“What we have found is that if you block this enzyme, almost all T cells die after three days but the regulatory T cells can survive,” says Dr. Makio Iwashima, MCG immunologist and the study’s corresponding author. “After three days, we give them some food to grow and, in one week, you get about 90 percent pure regulatory cells.”

The approach worked with laboratory-grade alcohol, called butanol, as well as beverage-grade ethanol.

Normally, regulatory T cells constitute about 2-5 percent of all T cells, Dr. Iwashima says. Isolating them is doable but a long, expensive process.

When researchers gave some of the regulatory T cells to a mouse model of inflammatory bowel disease, the symptoms, including dramatic weight loss, went away. Animals showed no classic signs of inflammation, just a significant increase in regulatory cells.

MCG researchers have obtained funding from the Arthritis Foundation and the Juvenile Diabetes Research Foundation to see if the cell therapy will work as well in animal models for arthritis and type 1diabetes.

“Our prediction and our hope is that we can restore balance,” says Dr. Iwashima. The usual 5- to 95-percent ratio of regulatory cells to non-regulatory T cells is lost in those with autoimmune disease, he says. However, too many regulatory cells also can be a problem, he says, noting that cancer patients have higher levels of regulatory cells.

Regulatory T cell therapy also resolved symptoms in a model of graft versus host disease, a problem for some bone marrow transplant patients when immune cells from the donor start attacking. This finding indicates a potential role for helping transplant patients keep new organs, the researchers say.

Dr. Iwashima has an Alcoholic Beverage Medical Research Foundation grant to pursue alcohol’s potential for helping isolate desirous regulatory cells. However, he cautions that his research findings are not a green light for patients with autoimmune disease to drink because of the negative health effects of regular alcohol consumption.

Dr. Iwashima and his colleagues believe the best way to optimize cell percentages is to do what the body does. In fact, they already are searching for an endogenous substance that interferes with phospholipase D.

“Ultimately, that is the most natural way, if we can find the compound in our bodies that can do the job,” Dr. Iwashima says. He theorizes that this natural substance helps destroy non-regulatory T cells when the body gets too many, say after fighting a big infection, and that it may not work well enough in people with autoimmune disease.

The research was supported by the National Institutes of Health.

Other contributors include lead author Dr. Nagendra Singh, postdoctoral fellow; Dr. Yoichi Seki, postdoctoral fellow; Maniko Takami, research assistant; Dr. Babak Babah, postdoctoral fellow; Dr. Phil R. Chandler, principal research scientist; Dr. Davood Khosravi, former postdoctoral fellow; Dr. Xiangjian Zheng, former graduate student; Mayuko Takezaki, research associate; Dr. Jeffrey R. Lee, associate professor; Dr. Andrew L. Mellor, director, MCG Immunotherapy Center; and Dr. Wendy B. Bollag, professor.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>