Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers use the abdomen to deliver oxygen to assist ailing lungs

10.08.2006
Novel technique, based on an animal model, could buy needed time to heal damaged lungs and save lives

Researchers at the University of Pennsylvania School of Medicine have helped develop a technique in animal models for using the abdominal cavity to exchange gas, supplementing the function normally performed by the lungs. The goal is to provide a way to support patients who are on a mechanical ventilator, suffering from reversible lung failure, but who need extra time and support to heal -- beyond what a ventilator can provide -- in order to survive. The findings are in the August issue of Chest, the journal of the American College of Chest Physicians.

"This is an alternate, novel way to deliver oxygen to the body that does not attempt to wring more function out of an already injured lung, by using ventilator settings that can actually exacerbate the underlying lung injury. The only other alternates that can 'rest' the lung involve variations of bypass machine technology, all of which require anticoagulation," explains Joseph Friedberg, MD, Associate Professor of Surgery and principal investigator of this study. "The ability to rest the lungs and provide supplemental oxygen with a technique that appears nontoxic and does not require anticoagulants could have huge implications some day for patients suffering from potentially reversible pulmonary failure from such diseases as: anthrax, bird flu, SARS, trauma, ARDS, pulmonary embolism, pneumonia and others. Sometimes patients have a condition in which they might have a chance to recover if they could survive the most severe phase of their disease."

The system these researchers developed involves recirculating a gas-carrying liquid through the abdomen to deliver oxygen. They tested the system in adult pigs that were put to sleep and ventilated with low concentrations of oxygen to simulate lung failure. Using this technique, they observed an increase in arterial oxygen saturation (the actual percentage of blood that's carrying oxygen) from 73% to 89%. Doctors generally aim to keep the oxygen saturation of patients in the 90% range. Friedberg adds, "If this experimental finding can be translated to a critical care setting, this could be a potentially life-saving increase in oxygenation."

Friedberg's idea was inspired by a similar technique, already used for patients suffering from kidney failure -- peritoneal dialysis -- in which a catheter is placed into the abdominal cavity and the blood is cleansed by using the lining of the abdominal cavity to exchange toxins and electrolytes. Friedberg wondered if it would be possible to use the lining of the abdominal cavity for gas exchange, like a "supplemental" lung, analogous to the way it is used like a "supplemental" kidney with peritoneal dialysis. To test this idea, it was clear that a nontoxic liquid capable of dissolving large volumes of gas would be needed. Friedberg felt perfluorocarbons were well suited for this purpose.

"These were short-term proof of principle experiments performed on otherwise healthy pigs. What we found, however, was that the circuit was able to increase arterial oxygen levels by a significant degree and that the technique was simple and safe to perform in these short-term studies. We have shown that this technique has potential. The next steps would be to optimize the effect, by testing it in a lung disease model and assess long-term safety," states Friedberg.

Friedberg addresses the potential for this technology in treating critically ill patients, "I have seen patients die who might have survived if there had been some way to buy them more time for their lungs to recover. They just exceeded the ability of the ventilator to exchange enough gas through their sick lungs. Also, there is a phenomenon of ventilator-induced lung injury, a vicious cycle where the high vent settings required to support someone with lung failure actually exacerbate the underlying lung disease, requiring even more vent support. A technique like abdominal perfusion, if proven to be safe and effective, could be used to short-circuit this positive feedback loop and 'rest' the lungs, rather than enter that potentially fatal spiral."

The results of this study are in Chest (http://www.chestjournal.org/), the journal of the American College of Chest Physicians. The article is titled "Peritoneal Perfusion with Oxygenated Perfluorocarbon Augments Systemic Oxygenation." Co-authors are Shamus Carr and Joshua Collins of Penn, as well as Joshua Cantor, Atul Rao, and Thiru Lakshman of Thomas Jefferson University, Philadelphia.

Susanne Hartman | EurekAlert!
Further information:
http://www.uphs.upenn.edu
http://www.chestjournal.org/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>