Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meth Promotes Spread of Virus in HIV-Infected Users

08.08.2006
Researchers at the University at Buffalo have presented the first evidence that the addictive drug methamphetamine, or meth, also commonly known as "speed" or "crystal," increases production of a docking protein that promotes the spread of the HIV-1 virus in infected users.

The investigators found that meth increases expression of a receptor called DC-SIGN, a "virus-attachment factor," allowing more of the virus to invade the immune system.

"This finding shows that using meth is doubly dangerous," said Madhavan P.N. Nair, Ph.D., first author on the study, published in the online version of the Journal of Neuroimmune Pharmacology. The study will appear in print in the September issue of the journal.

"Meth reduces inhibitions, thus increasing the likelihood of risky sexual behavior and the potential to introduce the virus into the body, and at the same time allows more virus to get into the cell," said Nair, professor of medicine and a specialist in immunology in the UB School of Medicine and Biomedical Sciences.

His research centers on dendritic cells, which serve as the first line of defense again pathogens, and two receptors on these cells -- HIV binding/attachment receptors (DC-SIGN) and the meth-specific dopamine receptor. Dendritic cells overloaded with virus due to the action of methamphetamine can overwhelm the T cells, the major target of HIV, and disrupt the immune response, promoting HIV infection.

"Now that we have identified the target receptor, we can develop ways to block that receptor and decrease the viral spread," said Nair. "We have to approach this disease from as many different perspectives as possible.

"If we could prevent the upregulation of the meth-specific dopamine receptor by blocking it, we may be able to prevent the interaction of meth with its specific receptors, thereby inhibiting the virus attachment receptor," said Nair.

"Right now, we don't know how the virus-attachment receptor and meth-specific receptors interact with each other, leading to the progression of HIV disease in meth-using HIV-infected subjects. That is the next question we want to answer.

"Since meth mediates its effects through interacting with dopamine receptors present on the cells, and meth increases DC-SIGN, which are the HIV attachment receptors, use of dopamine receptor blockers during HIV infection in meth users could be beneficial therapeutically to reduce HIV infection in these high-risk populations," Nair said.

Additional researchers on the publication, all from the UB Department of Medicine, are Supriya Mahajan, Ph.D., research assistant professor; Donald Sykes, Ph.D., research associate professor; Meghana V. Bapardekar, Ph.D., postdoctoral associate, and Jessica L. Reynolds, Ph.D., research assistant professor.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. The School of Medicine and Biomedical Sciences is one of five schools that constitute UB's Academic Health Center.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>