Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Meth Promotes Spread of Virus in HIV-Infected Users

08.08.2006
Researchers at the University at Buffalo have presented the first evidence that the addictive drug methamphetamine, or meth, also commonly known as "speed" or "crystal," increases production of a docking protein that promotes the spread of the HIV-1 virus in infected users.

The investigators found that meth increases expression of a receptor called DC-SIGN, a "virus-attachment factor," allowing more of the virus to invade the immune system.

"This finding shows that using meth is doubly dangerous," said Madhavan P.N. Nair, Ph.D., first author on the study, published in the online version of the Journal of Neuroimmune Pharmacology. The study will appear in print in the September issue of the journal.

"Meth reduces inhibitions, thus increasing the likelihood of risky sexual behavior and the potential to introduce the virus into the body, and at the same time allows more virus to get into the cell," said Nair, professor of medicine and a specialist in immunology in the UB School of Medicine and Biomedical Sciences.

His research centers on dendritic cells, which serve as the first line of defense again pathogens, and two receptors on these cells -- HIV binding/attachment receptors (DC-SIGN) and the meth-specific dopamine receptor. Dendritic cells overloaded with virus due to the action of methamphetamine can overwhelm the T cells, the major target of HIV, and disrupt the immune response, promoting HIV infection.

"Now that we have identified the target receptor, we can develop ways to block that receptor and decrease the viral spread," said Nair. "We have to approach this disease from as many different perspectives as possible.

"If we could prevent the upregulation of the meth-specific dopamine receptor by blocking it, we may be able to prevent the interaction of meth with its specific receptors, thereby inhibiting the virus attachment receptor," said Nair.

"Right now, we don't know how the virus-attachment receptor and meth-specific receptors interact with each other, leading to the progression of HIV disease in meth-using HIV-infected subjects. That is the next question we want to answer.

"Since meth mediates its effects through interacting with dopamine receptors present on the cells, and meth increases DC-SIGN, which are the HIV attachment receptors, use of dopamine receptor blockers during HIV infection in meth users could be beneficial therapeutically to reduce HIV infection in these high-risk populations," Nair said.

Additional researchers on the publication, all from the UB Department of Medicine, are Supriya Mahajan, Ph.D., research assistant professor; Donald Sykes, Ph.D., research associate professor; Meghana V. Bapardekar, Ph.D., postdoctoral associate, and Jessica L. Reynolds, Ph.D., research assistant professor.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. The School of Medicine and Biomedical Sciences is one of five schools that constitute UB's Academic Health Center.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>