The investigators found that meth increases expression of a receptor called DC-SIGN, a "virus-attachment factor," allowing more of the virus to invade the immune system.
"This finding shows that using meth is doubly dangerous," said Madhavan P.N. Nair, Ph.D., first author on the study, published in the online version of the Journal of Neuroimmune Pharmacology. The study will appear in print in the September issue of the journal.
"Meth reduces inhibitions, thus increasing the likelihood of risky sexual behavior and the potential to introduce the virus into the body, and at the same time allows more virus to get into the cell," said Nair, professor of medicine and a specialist in immunology in the UB School of Medicine and Biomedical Sciences.
His research centers on dendritic cells, which serve as the first line of defense again pathogens, and two receptors on these cells -- HIV binding/attachment receptors (DC-SIGN) and the meth-specific dopamine receptor. Dendritic cells overloaded with virus due to the action of methamphetamine can overwhelm the T cells, the major target of HIV, and disrupt the immune response, promoting HIV infection.
"Now that we have identified the target receptor, we can develop ways to block that receptor and decrease the viral spread," said Nair. "We have to approach this disease from as many different perspectives as possible.
"If we could prevent the upregulation of the meth-specific dopamine receptor by blocking it, we may be able to prevent the interaction of meth with its specific receptors, thereby inhibiting the virus attachment receptor," said Nair.
"Right now, we don't know how the virus-attachment receptor and meth-specific receptors interact with each other, leading to the progression of HIV disease in meth-using HIV-infected subjects. That is the next question we want to answer.
"Since meth mediates its effects through interacting with dopamine receptors present on the cells, and meth increases DC-SIGN, which are the HIV attachment receptors, use of dopamine receptor blockers during HIV infection in meth users could be beneficial therapeutically to reduce HIV infection in these high-risk populations," Nair said.
Additional researchers on the publication, all from the UB Department of Medicine, are Supriya Mahajan, Ph.D., research assistant professor; Donald Sykes, Ph.D., research associate professor; Meghana V. Bapardekar, Ph.D., postdoctoral associate, and Jessica L. Reynolds, Ph.D., research assistant professor.
The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York. The School of Medicine and Biomedical Sciences is one of five schools that constitute UB's Academic Health Center.
Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu
Indications of Psychosis Appear in Cortical Folding
26.04.2018 | Universität Basel
GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University
Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
World's smallest optical implantable biodevice
26.04.2018 | Power and Electrical Engineering
Molecular evolution: How the building blocks of life may form in space
26.04.2018 | Life Sciences
First Li-Fi-product with technology from Fraunhofer HHI launched in Japan
26.04.2018 | Power and Electrical Engineering