Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movie Spies on Malaria Parasite's Sneaky Behavior

08.08.2006
Malaria has been outsmarting the human immune system for centuries. Now, using real-time imaging to track malaria infections in live mice, researchers have discovered one of the parasite's sneakiest tricks—using dead liver cells to cloak and transport itself back into the bloodstream after leaving the liver.

Robert Ménard, a Howard Hughes Medical Institute (HHMI) international research scholar, and his postdoctoral fellow, Rogerio Amino, at the Institut Pasteur in Paris, filmed the malaria parasite as it transitioned from infecting liver cells to infecting red blood cells. During this stage of the parasite's life cycle, the classic symptoms of malaria—high fevers and chills—are triggered in people who are infected.

Ménard and Amino collaborated with Volker Heussler at the Bernhard-Nocht Institute for Tropical Medicine in Hamburg, Germany. Their images of the parasite sneaking back into the host's bloodstream—published in advance online in Science Express on August 3, 2006 and scheduled for September 2006 publication in Science—clear up a long-standing puzzle about the malaria parasite's life cycle. The discovery could lead to new ways of treating malaria, a disease that infects 300 million people per year and kills 1 million.

“The parasite has evolved this complex structure. The best image to describe it is the Trojan horse, because it both transports the parasites and camouflages them,” said Ménard. Like the ancient Greek warriors who hid inside a giant hollow horse to gain entry to Troy, the malaria parasites wrap themselves in a structure made of liver cell membrane. This membrane cloak enables them to sneak past immune cell sentinels and return to the bloodstream.

The malaria parasite, Plasmodium falciparum, has a complex life cycle. It passes from a mosquito's saliva to a human's blood, and then travels to the liver, where it infects and kills liver cells. After it leaves the liver, the parasite moves back into the bloodstream to infect and kill red blood cells. The rupturing of blood cells causes the worst symptoms of the infection, which can be deadly to children, pregnant women, and others with weak immune systems.

After leaving this trail of cellular death and destruction in its wake, the parasite is finally taken up again from the blood when another mosquito bites. Then it reproduces and waits for the mosquito to bite again to infect another person.

Researchers have long assumed that the form of the parasite that infects red blood cells, called a merozoite, was released from a ruptured liver cell and moved on its own back to the bloodstream. But studies in the laboratory have shown that the liver's resident macrophage immune cells happily gobble up free-moving merozoites.

“This was a paradox,” said Ménard. "We could not understand how the rate of infection could be so successful.”

Heussler's research team noticed irregular protrusions on the surface of liver cells that had been grown in a culture dish and infected with malaria. So they asked Ménard and Amino for help finding out whether liver cells in an infected animal developed the same protrusions.

Amino captured a series of images inside living mice at one-second intervals to track the parasites' journey. By using parasites labeled with a green fluorescent marker and staining the mouse's blood vessels with a red fluorescent marker, Amino was able to record microscopic images inside the animal's liver. He found that not only did the structures Heussler's group saw on the liver cells in the culture dish, called merosomes, protrude from the animal's liver cells as well, but the scientists watched as they pinched off and carried the parasite safely into the blood vessels.

Amino recalls watching the first data "movie" with Heussler. They could clearly see the merosome forming, pinching off the parasite, and traveling away with it along the blood vessel. “That is the beauty of this technique. You can really see what happens in real time—there are no gaps,” said Amino, now a professor of biochemistry at Federal University of Sao Paulo, Brazil.

The scientists also found that while the parasites are physically hidden inside the merosome, they further protect themselves with a biochemical cloaking device. They prevent the dying liver cell from broadcasting a chemical "death signal" that would normally tell a macrophage to ingest it.

“The parasite did not evolve this complex system for nothing,” Ménard commented. “It is probably very important that the parasite not travel free in the liver.”

If researchers could interfere with the formation of the merosome or restore the death signal, then immune system cells could stop most of the parasites before they reach the bloodstream—the place where they are most destructive.

How the parasites direct the dead liver cell to form the merosome structure and how that bag eventually bursts open in the blood are questions that remain to be answered.

But the power of using imaging to follow parasite movements inside live, infected animal hosts is clear. “It is now possible to follow in real time and quantitative terms the parasite in its host, and that is something we were only dreaming of a few years ago,” said Ménard.

Jennifer Donovan | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>