Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keep the baby, toss the bathwater: How kidneys retain proteins, discard waste

02.08.2006
New research may finally settle a decades-old debate about how the kidney keeps valuable blood proteins from harmfully slipping into the urine, a serious health symptom that often precedes kidney failure.

In genetically modified mice, scientists at Washington University School of Medicine in St. Louis captured images of a defective version of a kidney structure leaking a substance from the blood into the urine. The images suggest that the structure, known as the glomerular basement membrane (GBM), normally plays a key role in keeping blood proteins out of the urine.

The finding, reported in the August issue of the Journal of Clinical Investigation, will help doctors understand nephrotic syndrome, a condition with symptoms that include blood proteins in the urine. The syndrome can be triggered by a variety of genetic and environmental factors and leads to kidney failure over a varying time period.

"All the treatments we now use for nephrotic syndrome are either non-specific, meaning that we can't say for sure that they directly address the problem, or they are toxic," notes lead author George Jarad, M.D., a postdoctoral research scholar. "The first step to developing a specific treatment is to understand exactly what's happening. We have to know the details of the process before we can devise a remedy."

The new results are a reversal for nephrologists, who until a decade ago had long suspected the GBM was the primary barrier that retained blood plasma proteins. In the late 1990s, though, a Finnish research team bumped another structure, the slit diaphragm, into the position of prime suspect. They showed that a mutation in one of the proteins that make up the slit diaphragm caused a form of kidney disease that led to protein in the urine.

Both the slit diaphragm and the GBM are found in the glomeruli, small structures within the kidney that filter wastes from the blood and release them into the urine. Normally a small amount of blood protein leaks into the urine via this process and can be resorbed by the kidneys; however, when protein leakage levels go too high, scientists suspect this triggers a series of chain reactions that lead to kidney failure.

For their study, Jarad and colleagues in the labs of Jeffrey Miner, Ph.D., associate professor of medicine and cell biology and physiology, worked with mice lacking the gene for laminin beta 2, a protein that is part of the GBM. Two years ago, scientists linked a human mutation in the gene for laminin beta 2 to an inherited disorder that causes kidney disease and abnormalities in the eye and the neuromuscular system.

Scientists gave the mice ferritin, a protein often used as an imaging agent because it is easily detected by electron microscopes. They then used an electron microscope to take pictures of ferritin in the kidney and found it slipped more readily through the GBM in the genetically modified mice than it did in normal mice.

How comparable is ferritin to the blood proteins nephrologists are concerned about?

"Ferritin is actually much bigger than most blood proteins," Miner notes, "but other scientists have previously shown that, like blood proteins, ferritin is normally retained by the kidney."

Miner suspects--but cannot yet prove--that the problems in the slit diaphragm detected by the Finnish team may slow the ability of water to pass through the diaphragm and into the urine without affecting the passage of blood proteins. This could increase the concentration of protein passed into the urine without increasing the actual quantity of protein passed.

"It may be that the GBM is what determines the absolute amount of protein that's able to cross over into the urine, and the slit diaphragm and related structures determine its concentration," he explains. "It's a very complicated combination of fluid dynamics and physiology that we're still sorting out."

Miner and others are now working to determine how leakage of blood proteins through the GBM may lead to damage in structures beyond the membrane, potentially initiating a series of chain reactions that lead to kidney failure. They are also hoping to learn more about the kidneys' capabilities for resorption of proteins that have leaked into the urine.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>