Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study provides new insights into brain organisation

02.08.2006
Scientists have provided new insights into how the brain is organised - knowledge which could eventually inform diagnosis of and treatments for conditions like Alzheimer’s disease and autism.

A study by Newcastle University, UK, and the International University Bremen, Germany, debunked a prevailing theory that the nervous system should have mainly very short nerve fibre connections between nerve cells, or neurons, to function at its most effective.

Instead the study, which carried out a sophisticated computer analysis of public databases containing detailed information of worldwide anatomical studies on primate and worm brains, found that long nerve fibre connections were just as vital to overall brain function as short ones.

Much of what we know about the human brain derives from neuroscience research on primates, which are used because they have have experienced similar evolutionary stages to humans.

Brain scans of Alzheimer’s patients and people with autism have shown that they are lacking certain long-distance neural interactions, although experts have yet to discover their specific purpose.

The new study, published in the academic journal PLoS Computational Biology, found that long fibres are important because they can send messages quickly over a longer distance compared with if the same message was sent over the same distance via lots of short fibres. It also found that long fibres are more reliable for transmission of messages over longer distances.

“You can draw parallels with a train journey from Newcastle to London,” said lead researcher, Dr Marcus Kaiser, of Newcastle University’s School of Computing Science and the University’s Institute of Neuroscience.

“For example, you would get to London much more quickly and easily if you took a direct train there. However, if you had to make the journey via Durham, Leeds and Stevenage, changing trains each time, then it will take you longer to get there, and there is the possibility you would miss a connection at some point. It’s the same in the human brain.”

The computer programme, run over several days, took information about the length of nerve fibres in the primate brain and neuronal connections called axons in the brain of a species of worm known as Caenorhabditis elegans. It then tested if the total length of fibres could be reduced, by testing billions of different position arrangements. Indeed, wiring lengths could be reduced by up to 50% owing to the fact that neural systems have surprisingly many long-distance connections.

Co-researcher Dr Claus Hilgetag, an associate professor with International University Bremen’s School of Engineering and Science, said: “Many people have suggested that the brain is like a computer and that for optimum effectiveness it should have mainly short connections between the nerve cells. Our research suggests that a combination of different lengths of neural projections is essential.

“It is particularly interesting that we made the same observations in both the primate and the worm as their brains are very different in terms of shape and size.”

Although it is too early for the research to have direct clinical applications, the researchers suggest that it may eventually contribute towards insights into the diagnosis and possibly the treatment of patients with Alzheimer’s and autism if more information about neural networks - and specifically what the long and short nerve fibres do in the brain - is garnered.

One potential development could be a predictive test for the conditions, which examines and analyses a patient’s brain organisation, aiding diagnosis and possibly showing how the condition may develop over the coming years.

The study is the most comprehensive yet to look at the spatial organisation of the nervous system in primates and worms.

Claire Jordan | alfa
Further information:
http://www.ncl.ac.uk

More articles from Health and Medicine:

nachricht Observing the cell's protein factories during self-assembly
15.06.2018 | Charité - Universitätsmedizin Berlin

nachricht Scientists unravel molecular mechanisms of Parkinson's disease
13.06.2018 | The Francis Crick Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>