Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT team probes inflammation, disease link

31.07.2006
New research at MIT may help scientists better understand the chemical associations between chronic inflammation and diseases such as cancer and atherosclerosis. The work could lead to drugs that break the link between the two.

When an infection occurs, immune cells flock to the area and secrete large amounts of highly reactive chemicals to combat the invader. But, these inflammatory chemicals also attack normal tissue surrounding the infection and damage critical components of cells, including DNA. During chronic inflammation, that damage may lead to mutations or cell death and even to cancer and other diseases.

MIT researchers, led by toxicology graduate student Yelena Margolin of the Biological Engineering Division, have discovered that the DNA damage produced by one of these inflammatory chemicals, nitrosoperoxycarbonate, occurs at unexpected locations along the DNA helix. The finding counters the prevailing theory about where the DNA damage occurs and may shed light on new ways to diagnose and combat inflammation.

"We need to understand the mechanisms of inflammation in order to make new drugs that will break the link between inflammation and disease and to develop predictive biomarkers," said Dr. Peter Dedon, professor of toxicology and biological engineering and associate director of the Biological Engineering Division at MIT. "One of our goals is to develop biomarkers that can tell if you have inflammation and to define its extent, severity and location."

Margolin, Dedon and their colleagues at MIT and New York University reported their findings in a recent advance online issue of Nature Chemical Biology.

For years researchers have studied how the chemicals associated with the body's response to infection can damage DNA. That process begins with the removal of an electron from guanine, one of the four base building blocks that determine the genetic code in DNA. That removal is called oxidation, and guanine is the most easily oxidized of the four building blocks.

The prevailing theory has been that oxidation occurs most frequently when the guanine is sandwiched between two other guanine bases in the DNA helix.

By using comprehensive chemical screening and analysis of the frequency of DNA damage, the researchers found that a chemical produced during inflammation, nitrosoperoxycarbonate, actually caused oxidative damage at guanines that were supposed to be the least easily oxidized. The damage did not occur in clusters of guanine as expected, but rather at locations where guanine precedes cytosine, another of the four building blocks.

"That observation overturns the prevailing theory for predicting the location of DNA damage in the genome and complicates our understanding of the basis for diseases arising from chronic inflammation," said Dedon. "But it is likely to stir up discussions in the DNA damage and mutagenesis fields that could help us better understand the consequences of inflammation."

Margolin's and Dedon's colleagues on the paper are Jean-Francois Cloutier, auxiliary professor of pharmaceutical chemistry at Université Laval in Québec and formerly of the Dedon lab; Vladimir Shafirovich, research professor of chemistry at New York University; and Nicholas Geacintov, professor of chemistry and department chair at New York University.

The research was funded by the National Cancer Institute.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>