Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical steroid's baffling connection to osteoporosis becomes clearer

31.07.2006
Scientists are closing in on the solution to a persistent medical puzzle: why do high doses of cortisone, widely prescribed for asthma, rheumatoid arthritis and other inflammatory and autoimmune conditions, weaken bones?

Through studies of mice, researchers at Washington University School of Medicine in St. Louis have now identified osteoclasts, cells that dismantle old bone, as the essential link between osteoporosis and cortisone. As scientists flesh out the molecular-level details of this connection, they may be able to identify targets for therapy to prevent cortisone's damaging side effects on bone.

"High-dose cortisone is the second most common cause of osteoporosis, and we currently have no real treatment for this serious side effect," says senior author Steven L. Teitelbaum, M.D., Messing Professor of Pathology and Immunology. "Given how frequently these drugs are used to treat many different conditions, that's a major clinical problem."

Teitelbaum and colleagues including lead author Hyun-Ju Kim, Ph.D., a postdoctoral fellow, publish their results in the August issue of the Journal of Clinical Investigation.

Cortisone is a steroid produced naturally by the adrenal gland and synthesized by a number of pharmaceutical companies for clinical use. The drug is also used to treat lupus, multiple sclerosis and chronic obstructive pulmonary disease, and it is prescribed to transplant patients to prevent rejection of transplanted organs.

Earlier attempts to identify the connection between bone loss and cortisone produced seemingly contradictory results. In lab animal experiments, researchers found cortisone caused bone-building osteoblast cells to self-destruct, suggesting that cortisone disrupts the body's ability to form new bone after it is naturally dismantled by osteoclasts. However, experiments in the test tube also showed cortisone stimulates bone formation.

Teitelbaum identified a new opportunity for exploring the conundrum while at a lecture by Washington University colleague Louis J. Muglia, M.D., Ph.D., director of pediatric endocrinology at St. Louis Children's Hospital. Muglia's group studies the health effects of stress, many of which are mediated by cortisone. To aid his research, Muglia developed a line of genetically modified mice where receptors for cortisone, which are found throughout the body, could be selectively eliminated in individual cell types.

By crossbreeding their genetically modified mouse lines, researchers produced a line of mice whose bone-dismantling osteoclasts lacked cortisone receptors. When researchers gave cortisone to these mice, the bone-weakening effects of the drugs were blocked.

In addition, scientists found that cortisone inhibits the ability of osteoclasts to dismantle old bone in genetically normal mice. This blockage might seem to leave bones free to retain their strength, but with the regular skeletal renewal process stopped, bones will weaken dramatically from aging and stress. Dampening of osteoclast activity may also cause a chain reaction that slows activity of bone-building osteoblasts.

"We now have an idea of what's happening from a viewpoint of 1,000 feet up or so," says Teitelbaum, comparing the new insight to sighting a highway from an airplane window. "Now we'll start looking more closely at the molecular mechanisms involved to see if we can generate therapeutic targets."

Michael Purdy | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>