Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New genetic model for Parkinson's disease

31.07.2006
Researchers at the Karolinska Institute in Sweden are homing in on mechanisms that may explain one set of causes for Parkinson's disease. In mice they have mimicked disturbances of mitochondria thought to be one cause of disease. By genetic means the disturbance of mitochondria - the energy factories of cells - were directed to those nerve cells that produce the transmitter substance dopamine and that die in Parkinson's disease.

”The course of disease in these mice is strikingly similar to human disease”, says Dr. Lars Olson.

In the mouse model generated by the research team, a gene called TFAM is automatically deleted from the genome in dopamine nerve cells only. Without TFAM, mitochondria cannot function normally. The so called respiratory chain is compromised and energy production decreases severely in the dopamine cells.

The new mice are born healthy from healthy but genetically modified parents and will develop spontaneous disease. Previous studies in the field have been based on researchers delivering neurotoxic substances to kill the dopamine neurons. In the new mice, however, mice develop disease slowly in adulthood, like humans with Parkinson's disease, which may facilitate research aimed at finding novel medical treatments and other therapies.

”We see that the dopamine producing nerve cells in the brain stem slowly degenerate”, says Dr. Nils-Göran Larsson. ”In the microscope we can see that the mitochondria are swollen and that aggregates of a protein, probably alpha-synuclein starts to accumulate in the nerve cell bodies. Inclusions of alpha-synuclein-rich so called Lewy bodies is typical for the human disease.”

The causes of Parkinson's disease have long remained a mystery. Genes and environment are both implicated, but recently there has been an increased focus on the roles of genetic factors. It has been found that mutations in a number of genes can lead directly to disease, while other mutations may be susceptibility factors, so that carriers have an increased risk of becoming ill.

A common denominator for some of the implicated genes is their suggested role for the normal functioning of mitochondria.

”Like patients, the mice can be treated with levo-Dopa, a precursor of the lost substance dopamine”, says Dr. Nils-Göran Larsson. ”The course of the disease, as well as the brain changes in this mouse are more similar to Parkinson's disease than most other models. This supports the notion that genetic risk factors are important.”

”Like in patients, the dopamine nerve cells in the new mouse model die in a specific order”, says Dr. Lars Olson. ”We hope the mouse will help us understand why certain dopamine nerve cells are more sensitive than others, so that we can develop drugs that delay, ore even stop the nerve cell death.”

The project, which is a collaboration between Dr. Nils-Göran Larsson's and Dr. Lars Olson's teams and in which Dr. Staffan Cullheim's team has contributed with electron microscopical analysis, is being published this week as an Early edition in Proceedings of the National Academy of Sciences. Collaborations regarding the new Parkinson mouse are also ongoing with Dr. Barry Hoffer's team at NIDA, NIH.

Katarina Sternudd | alfa
Further information:
http://www.ki.se

More articles from Health and Medicine:

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>