Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New genetic model for Parkinson's disease

Researchers at the Karolinska Institute in Sweden are homing in on mechanisms that may explain one set of causes for Parkinson's disease. In mice they have mimicked disturbances of mitochondria thought to be one cause of disease. By genetic means the disturbance of mitochondria - the energy factories of cells - were directed to those nerve cells that produce the transmitter substance dopamine and that die in Parkinson's disease.

”The course of disease in these mice is strikingly similar to human disease”, says Dr. Lars Olson.

In the mouse model generated by the research team, a gene called TFAM is automatically deleted from the genome in dopamine nerve cells only. Without TFAM, mitochondria cannot function normally. The so called respiratory chain is compromised and energy production decreases severely in the dopamine cells.

The new mice are born healthy from healthy but genetically modified parents and will develop spontaneous disease. Previous studies in the field have been based on researchers delivering neurotoxic substances to kill the dopamine neurons. In the new mice, however, mice develop disease slowly in adulthood, like humans with Parkinson's disease, which may facilitate research aimed at finding novel medical treatments and other therapies.

”We see that the dopamine producing nerve cells in the brain stem slowly degenerate”, says Dr. Nils-Göran Larsson. ”In the microscope we can see that the mitochondria are swollen and that aggregates of a protein, probably alpha-synuclein starts to accumulate in the nerve cell bodies. Inclusions of alpha-synuclein-rich so called Lewy bodies is typical for the human disease.”

The causes of Parkinson's disease have long remained a mystery. Genes and environment are both implicated, but recently there has been an increased focus on the roles of genetic factors. It has been found that mutations in a number of genes can lead directly to disease, while other mutations may be susceptibility factors, so that carriers have an increased risk of becoming ill.

A common denominator for some of the implicated genes is their suggested role for the normal functioning of mitochondria.

”Like patients, the mice can be treated with levo-Dopa, a precursor of the lost substance dopamine”, says Dr. Nils-Göran Larsson. ”The course of the disease, as well as the brain changes in this mouse are more similar to Parkinson's disease than most other models. This supports the notion that genetic risk factors are important.”

”Like in patients, the dopamine nerve cells in the new mouse model die in a specific order”, says Dr. Lars Olson. ”We hope the mouse will help us understand why certain dopamine nerve cells are more sensitive than others, so that we can develop drugs that delay, ore even stop the nerve cell death.”

The project, which is a collaboration between Dr. Nils-Göran Larsson's and Dr. Lars Olson's teams and in which Dr. Staffan Cullheim's team has contributed with electron microscopical analysis, is being published this week as an Early edition in Proceedings of the National Academy of Sciences. Collaborations regarding the new Parkinson mouse are also ongoing with Dr. Barry Hoffer's team at NIDA, NIH.

Katarina Sternudd | alfa
Further information:

More articles from Health and Medicine:

nachricht Advanced analysis of brain structure shape may track progression to Alzheimer's disease
26.10.2016 | Massachusetts General Hospital

nachricht Indian roadside refuse fires produce toxic rainbow
26.10.2016 | Duke University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>