Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover on-off switch for chronic pain

21.07.2006
Chronic pain affects approximately 48 million people in the U.S. and current medications are either largely ineffective or have serious side effects.

But researchers from Columbia University Medical Center have discovered a protein in nerve cells that acts as a switch for chronic pain, and have applied for a patent to develop a new class of drugs that will block chronic pain by turning this switch off. The discovery is published on the website of the journal Neuroscience, and will appear in the publication's August issue.

Most prior attempts at alleviating chronic pain have focused on the "second order" neurons in the spinal cord that relay pain messages to the brain. It's difficult to inhibit the activity of these neurons with drugs, though, because the drugs need to overcome the blood-brain barrier. Instead, the CUMC researchers have focused on the more accessible "first order" neurons in the periphery of our body that send messages to the spinal cord.

Pain becomes chronic when the activity of first and second order neurons persists after damaged neuron heals or the tissue inflammation subsides. It's been known for years that for chronic pain to persist, a master switch must be turned on inside the peripheral neurons, though until now the identity of this switch remained a mystery. Richard Ambron, Ph.D., professor of cell biology, and Ying-Ju Sung, Ph.D., assistant professor, both in the department of Anatomy and Cell Biology, have now discovered that the switch is an enzyme called protein kinase G (PKG).

"We're very optimistic that this discovery and our continued research will ultimately lead to a novel approach to pain relief for the millions suffering from chronic pain," said Dr. Ambron.

The researchers found that upon injury or inflammation, the PKG is turned on and activated. Once activated, these molecules set off other processes that generate the pain messages. As long as the PKG remains on, the pain persists. Conversely, turning the PKG off relieves the pain, making PKG an excellent target for therapy.

Dr. Ambron and Dr. Sung have applied for a patent for the pathway that turns on the PKG, as well as several molecules that inhibit it.

Based on the 2004 Americans Living with Pain Survey, 72 percent of people with chronic pain have lived with it for more than three years, including a third who have lived with pain for more than a decade. Yet nearly half of people with pain do not consult a physician for several months or longer, despite the impact the pain has on their lives.

The worldwide painkiller market was worth $50 billion in 2005 and is expected to increase to $75 billion by 2010 and $105 billion by 2015. But none of the existing drugs on the market are adequate to deal with chronic pain. Cox-2 inhibitors carry severe risk of side effects, opioids are highly addictive, Tylenol is ineffective for chronic pain, and other pain drugs cause significant drowsiness.

Craig LeMoult | EurekAlert!
Further information:
http://www.cumc.columbia.edu

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>