Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover on-off switch for chronic pain

21.07.2006
Chronic pain affects approximately 48 million people in the U.S. and current medications are either largely ineffective or have serious side effects.

But researchers from Columbia University Medical Center have discovered a protein in nerve cells that acts as a switch for chronic pain, and have applied for a patent to develop a new class of drugs that will block chronic pain by turning this switch off. The discovery is published on the website of the journal Neuroscience, and will appear in the publication's August issue.

Most prior attempts at alleviating chronic pain have focused on the "second order" neurons in the spinal cord that relay pain messages to the brain. It's difficult to inhibit the activity of these neurons with drugs, though, because the drugs need to overcome the blood-brain barrier. Instead, the CUMC researchers have focused on the more accessible "first order" neurons in the periphery of our body that send messages to the spinal cord.

Pain becomes chronic when the activity of first and second order neurons persists after damaged neuron heals or the tissue inflammation subsides. It's been known for years that for chronic pain to persist, a master switch must be turned on inside the peripheral neurons, though until now the identity of this switch remained a mystery. Richard Ambron, Ph.D., professor of cell biology, and Ying-Ju Sung, Ph.D., assistant professor, both in the department of Anatomy and Cell Biology, have now discovered that the switch is an enzyme called protein kinase G (PKG).

"We're very optimistic that this discovery and our continued research will ultimately lead to a novel approach to pain relief for the millions suffering from chronic pain," said Dr. Ambron.

The researchers found that upon injury or inflammation, the PKG is turned on and activated. Once activated, these molecules set off other processes that generate the pain messages. As long as the PKG remains on, the pain persists. Conversely, turning the PKG off relieves the pain, making PKG an excellent target for therapy.

Dr. Ambron and Dr. Sung have applied for a patent for the pathway that turns on the PKG, as well as several molecules that inhibit it.

Based on the 2004 Americans Living with Pain Survey, 72 percent of people with chronic pain have lived with it for more than three years, including a third who have lived with pain for more than a decade. Yet nearly half of people with pain do not consult a physician for several months or longer, despite the impact the pain has on their lives.

The worldwide painkiller market was worth $50 billion in 2005 and is expected to increase to $75 billion by 2010 and $105 billion by 2015. But none of the existing drugs on the market are adequate to deal with chronic pain. Cox-2 inhibitors carry severe risk of side effects, opioids are highly addictive, Tylenol is ineffective for chronic pain, and other pain drugs cause significant drowsiness.

Craig LeMoult | EurekAlert!
Further information:
http://www.cumc.columbia.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>