Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover on-off switch for chronic pain

21.07.2006
Chronic pain affects approximately 48 million people in the U.S. and current medications are either largely ineffective or have serious side effects.

But researchers from Columbia University Medical Center have discovered a protein in nerve cells that acts as a switch for chronic pain, and have applied for a patent to develop a new class of drugs that will block chronic pain by turning this switch off. The discovery is published on the website of the journal Neuroscience, and will appear in the publication's August issue.

Most prior attempts at alleviating chronic pain have focused on the "second order" neurons in the spinal cord that relay pain messages to the brain. It's difficult to inhibit the activity of these neurons with drugs, though, because the drugs need to overcome the blood-brain barrier. Instead, the CUMC researchers have focused on the more accessible "first order" neurons in the periphery of our body that send messages to the spinal cord.

Pain becomes chronic when the activity of first and second order neurons persists after damaged neuron heals or the tissue inflammation subsides. It's been known for years that for chronic pain to persist, a master switch must be turned on inside the peripheral neurons, though until now the identity of this switch remained a mystery. Richard Ambron, Ph.D., professor of cell biology, and Ying-Ju Sung, Ph.D., assistant professor, both in the department of Anatomy and Cell Biology, have now discovered that the switch is an enzyme called protein kinase G (PKG).

"We're very optimistic that this discovery and our continued research will ultimately lead to a novel approach to pain relief for the millions suffering from chronic pain," said Dr. Ambron.

The researchers found that upon injury or inflammation, the PKG is turned on and activated. Once activated, these molecules set off other processes that generate the pain messages. As long as the PKG remains on, the pain persists. Conversely, turning the PKG off relieves the pain, making PKG an excellent target for therapy.

Dr. Ambron and Dr. Sung have applied for a patent for the pathway that turns on the PKG, as well as several molecules that inhibit it.

Based on the 2004 Americans Living with Pain Survey, 72 percent of people with chronic pain have lived with it for more than three years, including a third who have lived with pain for more than a decade. Yet nearly half of people with pain do not consult a physician for several months or longer, despite the impact the pain has on their lives.

The worldwide painkiller market was worth $50 billion in 2005 and is expected to increase to $75 billion by 2010 and $105 billion by 2015. But none of the existing drugs on the market are adequate to deal with chronic pain. Cox-2 inhibitors carry severe risk of side effects, opioids are highly addictive, Tylenol is ineffective for chronic pain, and other pain drugs cause significant drowsiness.

Craig LeMoult | EurekAlert!
Further information:
http://www.cumc.columbia.edu

More articles from Health and Medicine:

nachricht Vanishing capillaries
23.03.2017 | Technische Universität München

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>