Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover on-off switch for chronic pain

21.07.2006
Chronic pain affects approximately 48 million people in the U.S. and current medications are either largely ineffective or have serious side effects.

But researchers from Columbia University Medical Center have discovered a protein in nerve cells that acts as a switch for chronic pain, and have applied for a patent to develop a new class of drugs that will block chronic pain by turning this switch off. The discovery is published on the website of the journal Neuroscience, and will appear in the publication's August issue.

Most prior attempts at alleviating chronic pain have focused on the "second order" neurons in the spinal cord that relay pain messages to the brain. It's difficult to inhibit the activity of these neurons with drugs, though, because the drugs need to overcome the blood-brain barrier. Instead, the CUMC researchers have focused on the more accessible "first order" neurons in the periphery of our body that send messages to the spinal cord.

Pain becomes chronic when the activity of first and second order neurons persists after damaged neuron heals or the tissue inflammation subsides. It's been known for years that for chronic pain to persist, a master switch must be turned on inside the peripheral neurons, though until now the identity of this switch remained a mystery. Richard Ambron, Ph.D., professor of cell biology, and Ying-Ju Sung, Ph.D., assistant professor, both in the department of Anatomy and Cell Biology, have now discovered that the switch is an enzyme called protein kinase G (PKG).

"We're very optimistic that this discovery and our continued research will ultimately lead to a novel approach to pain relief for the millions suffering from chronic pain," said Dr. Ambron.

The researchers found that upon injury or inflammation, the PKG is turned on and activated. Once activated, these molecules set off other processes that generate the pain messages. As long as the PKG remains on, the pain persists. Conversely, turning the PKG off relieves the pain, making PKG an excellent target for therapy.

Dr. Ambron and Dr. Sung have applied for a patent for the pathway that turns on the PKG, as well as several molecules that inhibit it.

Based on the 2004 Americans Living with Pain Survey, 72 percent of people with chronic pain have lived with it for more than three years, including a third who have lived with pain for more than a decade. Yet nearly half of people with pain do not consult a physician for several months or longer, despite the impact the pain has on their lives.

The worldwide painkiller market was worth $50 billion in 2005 and is expected to increase to $75 billion by 2010 and $105 billion by 2015. But none of the existing drugs on the market are adequate to deal with chronic pain. Cox-2 inhibitors carry severe risk of side effects, opioids are highly addictive, Tylenol is ineffective for chronic pain, and other pain drugs cause significant drowsiness.

Craig LeMoult | EurekAlert!
Further information:
http://www.cumc.columbia.edu

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>