Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma may be over-diagnosed

18.07.2006
Researchers note first-ever criteria for distinguishing sun damage from early melanoma, providing guidelines to lessen removal of healthy tissue

A Mayo Clinic physician and colleagues have defined the normal number of melanocytes that are present in Caucasians' sun-exposed skin. Until now, there has not been a criterion to distinguish sun damage from early (in situ) melanoma. Results of the study, which shed light on this undefined area in skin cancer, are available in the July issue of Archives of Dermatology.

"There are many uncertainties in medicine. In many instances these uncertainties lead to overly aggressive treatments," says Ali Hendi, M.D., Mayo Clinic dermatologic surgeon and lead investigator of the study. "We didn't have an accurate way to distinguish cancer from over-exposed but normal skin, and this study was designed to find the missing link."

There are two basic types of skin cancer, non-melanoma, which includes basal cell and squamous cell cancers, and melanoma. Melanoma is the deadliest, reports the American Cancer Society, accounting for only 4 percent of diagnosed skin cancers, but nearly all of the deaths. It originates in melanocytes, the cells that produce melanin, which colors skin, hair and eyes.

Dr. Hendi's team thought that pathologists and Mohs surgeons may err on the side of over-diagnosing melanoma in sun-damaged skin, leading to additional and unnecessary surgery, complications or deformity. Mohs surgery, named for Frederic E. Mohs, M.D., who developed the technique, allows incremental removal of skin cancers, reducing removal of tissue to just the diseased areas. Mohs surgeons remove a thin section of the tumor, review its pathology under a high-powered microscope and are able to stop tissue removal as soon as the edge of the diseased tissue is reached. Because of this assumption of overly cautious surgery, the researchers decided to develop criteria by which cell changes that can indicate noncancerous sun damage can be distinguished from those which indicate melanoma.

In the study, disease-free tissues samples were obtained from 132 randomly selected Caucasian patients undergoing Mohs surgery for non-melanoma skin cancers of the face and neck. The samples were cut from the edges of the excised area, and consisted of normal, noncancerous skin. They found that in normal sun-exposed skin, the number of melanocytes in a 0.5 millimeter (mm) diameter was 15.6 (as opposed to undamaged skin that might have five to seven). Adjacent melanocytes, another indicator used by pathologists to diagnose early melanoma, were present in varying degrees in all but 11 percent of the samples. Finally, melanocytes were found to descend along the hair follicles, a finding previously attributed only to melanoma in sun-damaged skin. The researchers say these findings are significant because many surgeons remove tissue until they reach undamaged cells with "normal" melanocyte distribution.

Dr. Hendi predicts the study's findings will be valuable to doctors who diagnose and treat melanoma. "To be able to look in the microscope and have a measurement by which to determine successful removal of melanoma in situ is something we've hoped for quite a while," he says. "In many cases, surgeons can stop removing tissue much sooner, which will result in less trauma to the skin." Dr. Hendi's team recommends doctors use the study's findings as their new baseline for melanoma diagnosis and tissue removal.

Christine Leon | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>