Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma may be over-diagnosed

18.07.2006
Researchers note first-ever criteria for distinguishing sun damage from early melanoma, providing guidelines to lessen removal of healthy tissue

A Mayo Clinic physician and colleagues have defined the normal number of melanocytes that are present in Caucasians' sun-exposed skin. Until now, there has not been a criterion to distinguish sun damage from early (in situ) melanoma. Results of the study, which shed light on this undefined area in skin cancer, are available in the July issue of Archives of Dermatology.

"There are many uncertainties in medicine. In many instances these uncertainties lead to overly aggressive treatments," says Ali Hendi, M.D., Mayo Clinic dermatologic surgeon and lead investigator of the study. "We didn't have an accurate way to distinguish cancer from over-exposed but normal skin, and this study was designed to find the missing link."

There are two basic types of skin cancer, non-melanoma, which includes basal cell and squamous cell cancers, and melanoma. Melanoma is the deadliest, reports the American Cancer Society, accounting for only 4 percent of diagnosed skin cancers, but nearly all of the deaths. It originates in melanocytes, the cells that produce melanin, which colors skin, hair and eyes.

Dr. Hendi's team thought that pathologists and Mohs surgeons may err on the side of over-diagnosing melanoma in sun-damaged skin, leading to additional and unnecessary surgery, complications or deformity. Mohs surgery, named for Frederic E. Mohs, M.D., who developed the technique, allows incremental removal of skin cancers, reducing removal of tissue to just the diseased areas. Mohs surgeons remove a thin section of the tumor, review its pathology under a high-powered microscope and are able to stop tissue removal as soon as the edge of the diseased tissue is reached. Because of this assumption of overly cautious surgery, the researchers decided to develop criteria by which cell changes that can indicate noncancerous sun damage can be distinguished from those which indicate melanoma.

In the study, disease-free tissues samples were obtained from 132 randomly selected Caucasian patients undergoing Mohs surgery for non-melanoma skin cancers of the face and neck. The samples were cut from the edges of the excised area, and consisted of normal, noncancerous skin. They found that in normal sun-exposed skin, the number of melanocytes in a 0.5 millimeter (mm) diameter was 15.6 (as opposed to undamaged skin that might have five to seven). Adjacent melanocytes, another indicator used by pathologists to diagnose early melanoma, were present in varying degrees in all but 11 percent of the samples. Finally, melanocytes were found to descend along the hair follicles, a finding previously attributed only to melanoma in sun-damaged skin. The researchers say these findings are significant because many surgeons remove tissue until they reach undamaged cells with "normal" melanocyte distribution.

Dr. Hendi predicts the study's findings will be valuable to doctors who diagnose and treat melanoma. "To be able to look in the microscope and have a measurement by which to determine successful removal of melanoma in situ is something we've hoped for quite a while," he says. "In many cases, surgeons can stop removing tissue much sooner, which will result in less trauma to the skin." Dr. Hendi's team recommends doctors use the study's findings as their new baseline for melanoma diagnosis and tissue removal.

Christine Leon | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>