Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma may be over-diagnosed

18.07.2006
Researchers note first-ever criteria for distinguishing sun damage from early melanoma, providing guidelines to lessen removal of healthy tissue

A Mayo Clinic physician and colleagues have defined the normal number of melanocytes that are present in Caucasians' sun-exposed skin. Until now, there has not been a criterion to distinguish sun damage from early (in situ) melanoma. Results of the study, which shed light on this undefined area in skin cancer, are available in the July issue of Archives of Dermatology.

"There are many uncertainties in medicine. In many instances these uncertainties lead to overly aggressive treatments," says Ali Hendi, M.D., Mayo Clinic dermatologic surgeon and lead investigator of the study. "We didn't have an accurate way to distinguish cancer from over-exposed but normal skin, and this study was designed to find the missing link."

There are two basic types of skin cancer, non-melanoma, which includes basal cell and squamous cell cancers, and melanoma. Melanoma is the deadliest, reports the American Cancer Society, accounting for only 4 percent of diagnosed skin cancers, but nearly all of the deaths. It originates in melanocytes, the cells that produce melanin, which colors skin, hair and eyes.

Dr. Hendi's team thought that pathologists and Mohs surgeons may err on the side of over-diagnosing melanoma in sun-damaged skin, leading to additional and unnecessary surgery, complications or deformity. Mohs surgery, named for Frederic E. Mohs, M.D., who developed the technique, allows incremental removal of skin cancers, reducing removal of tissue to just the diseased areas. Mohs surgeons remove a thin section of the tumor, review its pathology under a high-powered microscope and are able to stop tissue removal as soon as the edge of the diseased tissue is reached. Because of this assumption of overly cautious surgery, the researchers decided to develop criteria by which cell changes that can indicate noncancerous sun damage can be distinguished from those which indicate melanoma.

In the study, disease-free tissues samples were obtained from 132 randomly selected Caucasian patients undergoing Mohs surgery for non-melanoma skin cancers of the face and neck. The samples were cut from the edges of the excised area, and consisted of normal, noncancerous skin. They found that in normal sun-exposed skin, the number of melanocytes in a 0.5 millimeter (mm) diameter was 15.6 (as opposed to undamaged skin that might have five to seven). Adjacent melanocytes, another indicator used by pathologists to diagnose early melanoma, were present in varying degrees in all but 11 percent of the samples. Finally, melanocytes were found to descend along the hair follicles, a finding previously attributed only to melanoma in sun-damaged skin. The researchers say these findings are significant because many surgeons remove tissue until they reach undamaged cells with "normal" melanocyte distribution.

Dr. Hendi predicts the study's findings will be valuable to doctors who diagnose and treat melanoma. "To be able to look in the microscope and have a measurement by which to determine successful removal of melanoma in situ is something we've hoped for quite a while," he says. "In many cases, surgeons can stop removing tissue much sooner, which will result in less trauma to the skin." Dr. Hendi's team recommends doctors use the study's findings as their new baseline for melanoma diagnosis and tissue removal.

Christine Leon | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>