Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melanoma may be over-diagnosed

18.07.2006
Researchers note first-ever criteria for distinguishing sun damage from early melanoma, providing guidelines to lessen removal of healthy tissue

A Mayo Clinic physician and colleagues have defined the normal number of melanocytes that are present in Caucasians' sun-exposed skin. Until now, there has not been a criterion to distinguish sun damage from early (in situ) melanoma. Results of the study, which shed light on this undefined area in skin cancer, are available in the July issue of Archives of Dermatology.

"There are many uncertainties in medicine. In many instances these uncertainties lead to overly aggressive treatments," says Ali Hendi, M.D., Mayo Clinic dermatologic surgeon and lead investigator of the study. "We didn't have an accurate way to distinguish cancer from over-exposed but normal skin, and this study was designed to find the missing link."

There are two basic types of skin cancer, non-melanoma, which includes basal cell and squamous cell cancers, and melanoma. Melanoma is the deadliest, reports the American Cancer Society, accounting for only 4 percent of diagnosed skin cancers, but nearly all of the deaths. It originates in melanocytes, the cells that produce melanin, which colors skin, hair and eyes.

Dr. Hendi's team thought that pathologists and Mohs surgeons may err on the side of over-diagnosing melanoma in sun-damaged skin, leading to additional and unnecessary surgery, complications or deformity. Mohs surgery, named for Frederic E. Mohs, M.D., who developed the technique, allows incremental removal of skin cancers, reducing removal of tissue to just the diseased areas. Mohs surgeons remove a thin section of the tumor, review its pathology under a high-powered microscope and are able to stop tissue removal as soon as the edge of the diseased tissue is reached. Because of this assumption of overly cautious surgery, the researchers decided to develop criteria by which cell changes that can indicate noncancerous sun damage can be distinguished from those which indicate melanoma.

In the study, disease-free tissues samples were obtained from 132 randomly selected Caucasian patients undergoing Mohs surgery for non-melanoma skin cancers of the face and neck. The samples were cut from the edges of the excised area, and consisted of normal, noncancerous skin. They found that in normal sun-exposed skin, the number of melanocytes in a 0.5 millimeter (mm) diameter was 15.6 (as opposed to undamaged skin that might have five to seven). Adjacent melanocytes, another indicator used by pathologists to diagnose early melanoma, were present in varying degrees in all but 11 percent of the samples. Finally, melanocytes were found to descend along the hair follicles, a finding previously attributed only to melanoma in sun-damaged skin. The researchers say these findings are significant because many surgeons remove tissue until they reach undamaged cells with "normal" melanocyte distribution.

Dr. Hendi predicts the study's findings will be valuable to doctors who diagnose and treat melanoma. "To be able to look in the microscope and have a measurement by which to determine successful removal of melanoma in situ is something we've hoped for quite a while," he says. "In many cases, surgeons can stop removing tissue much sooner, which will result in less trauma to the skin." Dr. Hendi's team recommends doctors use the study's findings as their new baseline for melanoma diagnosis and tissue removal.

Christine Leon | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>